De la percée du cheval persan au ré-étalon-nage à la baisse de la diversité à l’époque moderne : 5 000 ans d’histoire du cheval parcourus au galop

La domestication du cheval a révolutionné les civilisations humaines, aussi bien en terme de moyens de transport, d’échanges commerciaux ou de stratégies de guerre. Les premières traces de traite de jument, de harnachement ou de mise en captivité de cheval remontent à 5 500 ans dans les steppes d’Asie centrale. Cependant, les chevaux concernés ne seraient pas les ancêtres des chevaux modernes (Equus caballus) mais ceux des chevaux de Przewalski (Equus przewalskii). Une part de mystère subsiste quant au lieu de la domestication du cheval moderne : les steppes pontiques (au Sud-Est de l’Europe), l’Anatolie ou la péninsule ibérique ? Une précédente étude suggère aussi que suite à cette domestication, le génome du cheval aurait beaucoup changé au cours des 2 300 dernières années.

Reconstitution d'un cataphractaire sassanide. Les guerres entre les Sassanides (dynastie perse) et les Byzantins au début du IVe siècle auraient contribué à introduire le cheval persan en Europe.

Reconstitution d’un cataphractaire sassanide. Les guerres entre les Sassanides (dynastie perse) et les Byzantins à partir du IVe siècle suivies des invasions arabes auraient contribué à introduire le cheval persan en Europe. Source : John Tremelling, GNU Free Documentation License, Wikimedia.

Antoine Fages, Kristian Hanghøj, Naveed Khan et leurs collaborateurs d’un large consortium international ont cherché à tester ces hypothèses dans un article publié dans le journal Cell, le 30 mai 2019. Ils se sont basés sur sur le génome de 30 chevaux modernes, les génomes anciens obtenus de 129 individus répartis sur les six derniers millénaires, plus des marqueurs génétiques à l’échelle du génome pour 149 autres chevaux fossiles.

Il apparaît ainsi qu’alors que la diversité génétique était restée stable pendant 4 millénaires, celle-ci a baissé de 16% au cours des 200 à 400 dernières années. Cette période coïnciderait avec de forts changements de pratiques d’élevage marqués par une réduction du nombre de chevaux reproducteurs, entraînant une réduction de la taille efficace de la population, c’est-à-dire le nombre d’individus d’une population idéale chez laquelle on observerait un degré de dérive génétique équivalent à celui de la population réelle. Cette réduction n’est pas sans impact : la théorie prédit que les petites populations seraient en effet marquées par une atténuation de la sélection purifiante (sélection contre le maintien des allèles délétères), entraînant l’accumulation d’un fardeau génétique. La comparaison des patrons de sélection sur les sites synonymes et sur les sites non synonymes ainsi que sur ceux classés comme délétères par comparaison avec les variations conservées chez les espèces de Vertébrés a permis de vérifier cet attendu théorique chez les populations de chevaux : le fardeau génétique a bien augmenté chez les chevaux modernes, corrélativement à la perte de diversité. Cette réduction de diversité s’expliquerait par des stratégies drastiques de sélection d’étalons pour la reproduction. La diversité nucléotidique sur le chromosome Y, transmis par les étalons, diminue ainsi, à la fois en Asie et en Europe, au cours des deux derniers millénaires et chute aux niveaux actuels à partir de 850-1 350 de l’ère commune (anciennement appelée période après Jésus-Christ).

Diversité

Évolution de la diversité et du fardeau génétique chez le cheval domestique au cours du temps. En haut, la diversité, évaluée par l’hétérozygotie, chute brusquement chez les chevaux modernes par comparaison aux chevaux anciens. En bas, le fardeau génétique augmente corrélativement à la baisse de diversité, chez les chevaux modernes.

L’étude des relations phylogénétiques entre chevaux anciens et modernes est très informative quant aux échanges survenus les siècles passés. En plus des chevaux domestiques et des chevaux de Przewalski, les échantillons les plus anciens indiquent l’existence de deux autres lignées, aujourd’hui éteintes, de chevaux sauvages, l’une dans la péninsule ibérique, l’autre en Sibérie. Bien que présentes à l’époque de la domestication du cheval domestique, ces deux lignées n’auraient eu qu’une contribution marginale à la diversité des chevaux domestiques modernes, permettant de rejeter l’hypothèse d’un centre de domestication du cheval dans la péninsule ibérique.

En se focalisant sur la phylogénie des chevaux domestiques, on remarque que les poneys Shetlands et les chevaux Islandais modernes se classent à proximité de chevaux anciens du Nord de l’Europe. Ces deux races de chevaux prendraient peut-être leur origine dans les conquêtes vikings des VIIIe-XIe siècles. Le clade formé par ces chevaux est un clade frère de chevaux anciens européens, de la période Gallo-Romaine ou de la Tène (culture archéologique du 2nd Age du fer), traduisant une certaine cohésion génétique des chevaux européens anciens. Les chevaux modernes européens, autres que les poneys Shetlands et les chevaux Islandais, se retrouvent dans un autre clade, qui apparaîtrait en Europe au IXe siècle en Croatie, à une époque où ce fond génétique est encore absent en Europe du Nord. Sachant que cette période correspond à de fréquents raids arabes sur les côtes méditerranéennes et que ce clade correspond aussi à celui de chevaux persans sassanides des IVe et Ve siècles, ces résultats suggèrent une forte influence génétique des chevaux persans en Europe à partir du IXe siècle. Des résultats similaires ont été relevés en Asie avec le remplacement des fonds génétiques pré-existants en Asie centrale et en Mongolie par les chevaux d’origine persane à partir des VIIIe-IXe siècles.

Cet échantillon est aussi une opportunité de comprendre les gènes sélectionnés et par conséquent les caractères qui auraient été recherchés au cours de l’histoire du cheval domestique. Ainsi, la comparaison des fréquences alléliques entre les chevaux anciens asiatiques et européens et les chevaux byzantins de l’époque post-VIIe-IXe siècles, déjà largement marqués par l’introgression des chevaux d’origine persane, montre que les gènes impliqués dans la morpho-anatomie auraient beaucoup évolué sous l’influence des chevaux d’origine persane. Le gène MSTN impliqué dans la vitesse serait aussi un candidat sélectionné chez ces chevaux byzantins d’origine persane. Plus récemment, au cours du dernier millénaire, la sélection d’allèle à ce gène MSTN, mais aussi à deux autres gènes PDK4 et ACN9 connus pour influencer la vitesse des chevaux, confirme que l’accroissement de la vitesse de ses montures a été une préoccupation majeure de l’Homme.

Synthèse de l'histoire démographique du cheval cultivé.

Synthèse de l’histoire démographique du cheval cultivé, publiée dans l’article. Les conquêtes islamiques auraient entraîné une diffusion des chevaux de types persans qui auraient remplacé presque toutes les lignées de chevaux anciens présents en Asie et en Europe.

Références de l’article :

Antoine Fages, Kristian Hanghøj, Naveed Khan, Charleen Gaunitz, Andaine Seguin-Orlando, Michela Leonardi, Christian McCrory Constantz, Cristina Gamba, Khaled A.S. Al-Rasheid, Silvia Albizuri, Ahmed H.Alfarhan, Morten Allentoft, Saleh Alquraishi, David Anthony, Nurbol Baimukhanov, James H. Barrett, Jamsranjav Bayarsaikhan, Norbert Benecke, Eloísa Bernáldez-Sánchez, Luis Berrocal-Rangel, Fereidoun Biglari, Sanne Boessenkool, Bazartseren Boldgiv, Gottfried Brem, Dorcas Brown, Joachim Burger, Eric Crubézy, Linas Daugnora, Hossein Davoudi, Peter de Barros Damgaard, María de los Ángeles de Chorro y de Villa-Ceballos, Sabine Deschler-Erb, Cleia Detry, Nadine Dill, Maria do Mar Oom, Anna Dohr, Sturla Ellingvåg, Diimaajav Erdenebaatar, Homa Fathi, Sabine Felkel, Carlos Fernández-Rodríguez, Esteban García-Viñas, Mietje Germonpré, José D. Granado, Jón H. Hallsson, Helmut Hemmer, Michael Hofreiter, Aleksei Kasparov, Mutalib Khasanov, Roya Khazaeli, Pavel Kosintsev, Kristian Kristiansen, Tabaldiev Kubatbek, Lukas Kuderna, Pavel Kuznetsov, Haeedeh Laleh, Jennifer A. Leonard, Johanna Lhuillier, Corina Liesau von Lettow-Vorbeck, Andrey Logvin, Lembi Lõugas, Arne Ludwig, Cristina Luis, Ana Margarida Arruda, Tomas Marques-Bonet, Raquel Matoso Silva, Victor Merz, Enkhbayar Mijiddorj, Bryan K. Miller, Oleg Monchalov, Fatemeh A. Mohaseb, Arturo Morales, Ariadna Nieto-Espinet, Heidi Nistelberger, Vedat Onar, Albína H. Pálsdóttir, Vladimir Pitulko, Konstantin Pitskhelauri, Mélanie Pruvost, Petra Rajic Sikanjic, Anita Rapan Papeša, Natalia Roslyakova, Alireza Sardari, Eberhard Sauer, Renate Schafberg, Amelie Scheu, Jörg Schibler, Angela Schlumbaum, Nathalie Serrand, Aitor Serres-Armero, Beth Shapiro, Shiva Sheikhi Seno, Irina Shevnina, Sonia Shidrang, John Southon, Bastiaan Star, Naomi Sykes, Kamal Taheri, William Taylor, Wolf-Rüdiger Teegen, Tajana Trbojević Vukičević, Simon Trixl, Dashzeveg Tumen, Sainbileg Undrakhbold, Emma Usmanova, Ali Vahdati, Silvia Valenzuela-Lamas, Catarina Viegas, Barbara Wallner, Jaco Weinstock, Victor Zaibert, Benoit Clavel, Sébastien Lepetz, Marjan Mashkour, Agnar Helgason, Kári Stefánsson, Eric Barrey, Eske Willerslev, Alan K. Outram, Pablo Librado, Ludovic Orlando (2019) Tracking Five Millennia of Horse Management with Extensive Ancient Genome Time Series. Cell, 177(6) :1419-1435.e31. Publié le 30 mai 2019

Doit-on parler de races humaines comme on parle de races canines ? La réponse des génétic(h)iens

En 1956, le généticien Haldane posait la question suivante à des anthropologues : « Les différences biologiques entre les groupes humains sont-elles comparables avec celles de groupes d’animaux domestiques, tels que les lévriers ou les bulldogs ?». Les prolongements de cette question ont donné lieu à un débat populaire qui connaît son paroxysme dans des décisions politiques, qui sans revenir à l’idéologie nazie, ont abouti aux cinq catégories raciales actuellement en vigueur dans la législation américaine (Blanc /Noir ou Afro-Américain / Amérindien ou natifs d’Alaska /Asiatique / Hawaïen ou natifs d’autres îles du Pacifique). Mais le concept de races humaines ne serait-il pas davantage une construction sociale plutôt qu’une réalité biologique comparable aux races d’animaux domestiques, notamment les races canines ?

Races canines vs races humaines

A gauche, planche de races de chiens, tirée de ‘The New Student’s Reference Work’ (Ed. Chandler B. Beach, Chicago) publié en 1914. A droite, planche de visages humains d’origine variée, tirée de ‘Evolution of Life’ par Henri C. Chapman en 1873 (Ed. J.B. Lippincott, Philadelphie). Illustrations du Domaine public.

C’est la question à laquelle la chercheuse américaine Heather L. Norton et ses collaborateurs ont tenté de répondre dans un article de synthèse paru le 9 juillet 2019 dans la revue Evolution: Education and Outreach. Le concept génétique de races repose sur le fait qu’il existerait des groupes distincts au sein d’une espèce, c’est-à-dire pour lesquels la diversité intra-groupe serait minime alors que la diversité inter-groupes serait très importante. Chez l’Homme, les anthropologues ont comparé les individus par rapport à des critères comme la couleur de la peau, des mesures de crânes, les groupes sanguins ou encore des marqueurs génétiques.

Ainsi, l’analyse de la diversité génétique de chiens à partir de marqueurs moléculaires classait les individus dans des groupes génétiques qui correspondaient aux races dans 99 % des cas. Le même type d’analyse mené sur un groupe d’humains échantillonnés sur l’ensemble de la planète aboutissait au modèle le plus vraisemblable distinguant six groupes génétiques répartis en : (1) Afrique, (2) Europe/Moyen-Orient/Asie centrale, (3) Extrême-Orient, (4) Océanie, (5) Amériques et (6) les Kalashs, une population isolée du Nord-Ouest du Pakistan. La plupart de ces groupes génétiques s’explique par la barrière reproductive que représentent les limites entre continents. Toutefois, contrairement aux chiens, ces groupes génétiques ne doivent pas être interprétés comme des races. Déjà, l’analyse n’aboutit pas à un modèle incontestable de structure et il existe plusieurs modèles plausibles. On peut même parler de modèles imbriqués, indiquant plusieurs niveaux de structuration génétique plus ou moins marqués. Ainsi, si on sépare l’humanité en deux groupes on distinguera les populations d’Afrique/Europe/Moyen-Orient/Asie centrale de celles de l’Extrême-Orient/Océanie/Amériques. Si on sépare l’humanité en trois groupes, les populations d’Afrique de distinguent des populations d’Europe/Moyen-Orient/Asie centrale. Le découpage en quatre groupes génétiques sépare les populations d’Amériques de celles d’Extrême-Orient/Océanie. Ce dernier groupe est séparé dans le cas d’une subdivision en cinq groupes génétiques. Par ailleurs, peu importe le découpage, la probabilité d’assignation d’un humain à un groupe génétique n’est souvent pas totale et une personne est généralement assignée à plusieurs groupes génétiques simultanément.

Structure génétique observée pour 85 races de chiens.

Structure génétique observée pour 85 races de chiens. (a) L’abscisse montre les 85 races de chiens représentées par plusieurs individus. L’ordonnée indique la probabilité d’assignation aux groupes génétiques, représentés par des couleurs différentes. Les groupes génétiques identifiés sont généralement cohérents avec les races canines. (b) Analyses effectués indépendamment sur des couples de races que l’analyse globale n’avait pas réussi à différencier car ces races ont une origine commune (ex : Mastiff et Bullmastiff). A l’exception de deux types de Bergers Belges (le Groenendael et le Tervueren), ces analyses sur des sous-échantillons ont permis de différencier génétiquement les races. Cette figure a initialement été publiée dans Parker et al. (2004).

Structure des populations humaines

Structure génétique observée pour 52 populations humaines échantillonnées dans le monde entier. Les cinq analyses effectuées en fonction du nombre de groupes génétiques (K=2 à 6) montrent ce concept de structure imbriquée. L’origine géographique, notamment l’appartenance à un continent, est le facteur le plus structurant. Toutefois, de nombreux individus sont assignés à plus d’un groupe génétique. Ces résultats ont été publiés pour la première fois dans un article de Rosenberg et al. 2002.

L’analyse de la variance moléculaire (AMOVA) est un outil statistique permettant de décomposer la variance génétique selon différents niveaux hiérarchiques de structuration. Elle s’avère donc un bon moyen de tester la pertinence des groupes génétiques détectés. Si 27 % des différences génétiques observées entre les chiens se situent entre races canines, seulement 3,3 à 4,7 % de la variation génétique totale observée chez les humains se situent entre les groupes continentaux ou régionaux évoqués plus haut.

Comment expliquer ces différences entre la structuration des populations canines et des populations humaines ? La plupart des races de chiens ont une origine récente, correspondant à environ cent ans de sélection drastique où l’Homme a empêché les chiens de se reproduire en dehors de la race et n’a autorisé les reproductions qu’entre un petit nombre d’individus correspondant aux standards fixés pour la race. Il en résulte une diversité réduite qu’on peut estimer par l’hétérozygotie attendue H, c’est-à-dire la probabilité de tirer deux allèles différents connaissant les fréquences alléliques de la population. Chez une race canine, H est compris entre 0,313 et 0,610. Cette consanguinité est par ailleurs à l’origine d’un nombre considérable de maladies génétiques propres à chaque race. Du côté de l’espèce humaine, les facteurs qui empêchent les flux de gènes entre groupes régionaux sont des facteurs géographiques, culturels et linguistiques, qui, même s’ils s’exercent depuis plus longtemps que la sélection des races modernes de chiens, n’a pas eu un effet d’isolement génétique aussi marqué. Il en résulte une diversité génétique intra-groupe plus élevée que celles des races canines (H=0,664-0,792). L’indice de fixation FST qui marque l’ampleur de la différentiation génétique entre des populations était aussi largement plus élevé entre races canines (FST=0,33) qu’entre groupes continentaux humains (FST=0,052-0,083).

Le concept de race suppose aussi une homogénéité phénotypique. Un caractère aussi stigmatisant que celui de la couleur de la peau chez l’humain varie en fait assez largement au sein d’un continent puisque les populations originaires des tropiques et des hautes altitudes présentent les couleurs de peau les plus sombres, afin d’apporter une forte protection contre les UV. Ces continuums de couleurs de peau sont aussi permis par un contrôle génétique complexe de ce caractère de couleur de peau chez l’Homme (des centaines de gènes impliqués) contrairement aux chiens (neuf gènes identifiés). Quant à la taille des individus, leurs distributions se chevauchent largement entre catégories raciales américaines. Cela contraste fortement aux très impressionnantes différences de taille entre les races de chiens.

Alors, que reste-t-il au concept de race chez l’espèce humaine ? Une construction sociale bâtie en parallèle du racisme permettant à une élite dominante de stigmatiser des minorités. Preuve en est que ces classes raciales ont évolué au cours du temps pour appuyer des motivations politiques telles que l’esclavage ou les politiques migratoires. On peut définir le racisme comme l’idéologie politique selon laquelle les groupes humains ne seraient pas dotés des même capacités et qu’on leur attribuerait un jugement de valeur en distinguant des races supérieures et des races inférieures. L’historien Harrington considère que l’apparition du concept de races humaines aux États-Unis n’est pas étrangère à la généralisation dans les années 1880 des races pures de chiens, par opposition à ce qu’on appelle aujourd’hui les ‘village dogs’ qui sont aux chiens ce que le ‘chat de gouttière’ est aux chats. Cet événement coïncide avec le rejet des immigrants irlandais, allemands, italiens, juifs par les White Anglo-Saxon Protestants (WASP) déjà présents aux États-Unis.

Références de l’article :

Heather L. Norton, Ellen E. Quillen, Abigail W. Bigham, Laurel N. Pearson, Holly Dunsworth (2019) Human races are not like dog breeds: refuting a racist analogy. Evolution: Education and Outreach, 12: 17.