Modélisation 3D et Analyse de Structure

Bonjour,

Nous sommes Line Bouwens et Simon Coiffard, deux étudiants du cycle préparatoire à Polytech Angers. Lors de notre quatrième semestre, nous avons un projet de conception à réaliser. Nous souhaitons tous les deux intégrer la filière « Bâtiment : Exploitation, Maintenance et Sécurité » l’année prochaine. Il nous paraissait donc évident de choisir un projet dans le sens de notre objectif professionnel.

Notre projet va donc consister en une étude de plusieurs problématiques de dimensionnement. Nous allons vérifier la résistance d’éléments de la structure d’un bâtiment vis-à-vis des charges de services qu’il est susceptible de subir durant sa durée de vie, via 2 logiciels, Revit et Robot. Ce sont des logiciels Autodesk déjà installés sur les ordinateurs de l’école. Enfin, dans la mesure du possible, un prototype du bâtiment, à échelle réduite, sera obtenu par impression 3D en utilisant la maquette numérique.

Les premières heures ont été occupées par des didacticiels de prise en main des logiciels. Revit est un logiciel de design de bâtiment. Il nous permet de créer l’architecture désirée. Nous pouvons également appliquer les charges que l’on souhaite étudier. Le logiciel Robot calcule ensuite les effets de ces forces sur la structure et nous affiche les diagrammes sur le bâtiment comme sur la figure ci dessous.

moments induits par les forces

Ainsi, nous pouvons voir les parties soumises aux efforts les plus importants. Nous voyons ici que les forces impliquent une flexion du toit de l’abri. Si la flexion dépasse un certain degré de sécurité, nous devons y remédier en ajoutant des renforts, tels que des poteaux, pour soulager la structure. Ces modifications éventuelles de structure seront faites sur Revit puis prises en compte par Robot.

La première partie a été sur des structures simples. Pour la suite du projet, c’est notre professeur encadrant qui nous a donné le fichier du bâtiment final. Une vue d’ensemble est présentée sur la capture d’écran ci-dessous. Il est déjà dimensionné, notre travaille consiste donc à vérifier certains éléments de structure. Suite à la chute d’un balcon dans la ville d’Angers il y a 3 ans et le nombre d’accidents récurrents ayant pour cause des défauts de dimensionnement de la structure, nous avons décidé de s’intéresser à cette partie là en particulier.

vue du batiment

Nous avons vérifié, pour des formes de section des poteaux rondes et carrées ainsi que pour plusieurs liaisons au balcon, la résistance des poteaux au flambement, ou flambage, c’est à dire sa tendance à se déformer dans le sens perpendiculaire à la compression qu’il subit. Lors de tous nos calculs, nous obtenons une résistance très suffisante. Nous avons calculé le diamètre minimal des poteaux, qui est largement inférieur à celui alors sur le modèle Revit.

Le projet nous a ensuite amené à calculer la flèche du balcon, c’est à dire les efforts tranchants et moments interieurs du balcon, selon la position de la section étudiée par rapport au mur du bâtiment soutenant le balcon.

étude des forces et des moments

étude des forces et des moments

Pour finir, nous avons décidé d’ajouter sur le modèle Revit, du ferraillage dans le balcon et la dalle du premier étage. Nous avons donc fait les calculs. Cela consiste à déterminer leur taille mais aussi la densité, c’est à dire la répartition des armatures en métal.

Après avoir étudié ce bâtiment et sa structure, nous pouvons conclure qu’il est possible de le construire en toute sécurité.
Même si nous n’avons pas pu finaliser ce projet en imprimant la structure en 3D, cela nous a permis de découvrir de nouveaux logiciels qui nous seront utiles dans la suite de nos études ainsi que dans notre vie professionnelle. On a également pu étendre nos connaissances sur le domaine du bâtiment et comprendre pourquoi, malheureusement, des accidents peuvent arriver malgré les coefficients de sécurité pris en compte par les bureaux d’études.

Si le projet était à refaire, je demanderai au professeur de nous donner un bâtiment mal dimensionné afin de réfléchir par nous même aux différentes solutions que l’on pourrait apporter. Cela serait plus captivant et permettrait de mettre en avant notre créativité.

Nous remercions donc Hassen Riahi, professeur encadrant qui nous a proposé ce sujet, puis guidé et qui a répondu à nos questions.
Merci également à l’ensemble de l’équipe enseignante qui à rendu ces projets possibles.

Et finalement, merci à vous de nous avoir permis de partager nos découvertes et apprentissages avec vous;

Line Bouwens et Simon Coiffard, étudiants en EI2 (2018-2019)

Réalisation d’un moteur brushless

Nous sommes 3 élèves, Ronan GOMOND, Vivien JOLY et Mathis LEGARDINIER, en deuxième et dernière année du cycle préparatoire de Polytech Angers. Dans le cadre de la fin de notre deuxième année nous avons réalisé un projet d’une durée totale de 80H et qui avait pour but la réalisation d’un moteur brushless.

Le moteur brushless est un moteur électrique, pour comprendre le terme de brushless il nous faut regarder le fonctionnement d’un moteur à courant continu classique :

C’est le même principe pour n’importe quel moteur électrique. Une bobine traversée par un courant va créer un flux magnétique et si on inverse le sens du courant alors le flux sera inversé. Ainsi on peut attirer un aimant (par définition sensible aux champs magnétiques) et ensuite le repousser si on inverse le sens du courant dans la bobine. Les moteurs se différencient sur leur manière d’inverser le courant dans les bobines. Le moteur à courant continu utilise des balais qui par contact avec le rotor va inverser le sens du courant en fonction de la position du rotor :

Image issue de la page Wikipédia allemande du moteur à courant continu

Fonctionnement d’un moteur à courant continu

image tirée de la page Wikipédia allemande du moteur à courant continu, les balais sont représentés en orange.

Le moteur brushless, lui, n’a pas de balais cela lui permet d’être silencieux et d’avoir moins de frottements. En réalité l’inversion du courant est faite par électronique.

Notre premier moteur était constitué de 3 bobines (cuivre émaillé) au stator et 2 aimants permanents (néodyme-fer) au rotor. Il a été réalisé à l’imprimante 3D de l’atelier de l’école.
La programmation s’est faite en Arduino et était simplement l’inversion du sens du courant dans des bobines précises et à des instants précis.

Banchement

Carte Arduino pour le fonctionnement du moteur avec le shield d’alimentation des bobines Adafruit Motorshield v2.3

Le programme peut se résumer au chronogramme suivant :

T5

Ici on a 12 étapes pour une rotation complète du rotor, BX représente la bobine n°X
– L’action verte est “allumer la bobine dans un sens”
– L’action rouge est “allumer la bobine dans le sens opposé du vert”
– L’action grise est “éteindre la bobine”

On remarque que le chronogramme est le même pour chaque bobine mais décalé d’un tiers de rotation, ce qui est l’angle entre chaque bobine.

Nous avons eu le résultat suivant :

Rotation à 100 tour/min

Moyennement satisfaits nous avons réalisé une deuxième version en doublant les proportions, à savoir 6 bobines et 4 aimants. Tout en utilisant une imprimante 3D nous avons obtenu le moteur suivant, avec le même programme et le même chronogramme au seul détail qu’il représente qu’une demi-rotation. En multipliant les bobines/aimants par deux on a besoin de multiplier également par deux la durée du chronogramme. Les bobines étaient en série deux à deux, donc on avait bien 3 bobines d’un point de vue électrique.

Rotation à 500 tour/min

Ce deuxième résultat est bien plus satisfaisant. Néanmoins le fait d’utiliser du plastique pour le corps ne permet pas d’atteindre de grosses puissances car les bobines chauffent très vite avec l’effet Joule. Nous avons également pu identifier des pertes magnétiques, par exemple en mettant un noyau en fer dans la bobine nous aurions pu avoir un champ un peu plus fort.

Ce travail nous a permis d’utiliser nos connaissances en électromagnétisme, électricité et électronique. Nous avons également beaucoup appris sur les moteurs électriques.
L’autonomie qui nous a été donnée nous a stimulé sur l’impression que ce projet était vraiment le notre et que c’était à nous de le mener à bien.

Nous tenons à remercier Polytech Angers et plus particulièrement Monsieur AUTRIQUE, Madame GÉRARD, Monsieur MERCIER pour nous avoir aidé et avoir répondu à nos questions.

Merci à vous également pour avoir lu ce résumé !

Ballon stratosphérique

Chers lecteurs,

Nous regrettons fort de devoir vous le dire, mais l’article suivant n’est pas des plus joyeux.

Il raconte la triste aventure de quatre étudiants en deuxième année de classe préparatoire à Polytech’Angers qui ont toutes les malchances et collectionnent les angoisses.

Dans cet unique article, ils vont affronter les standards de la DGAC, les regards d’une centaine d’élèves en classe de quatrième, un système GPS défaillant, et des interviews incessantes. Pour notre part, il est dans notre devoir de raconter ces funestes épisodes, mais rien ne vous interdit, chers lecteurs, de passer votre chemin et de cliquer sur un autre article.

Avec nos sentiments respectueux.

Rosanne Biotteau, Ersin Duman, Juliette Trahan, Emmy Teillet. 

Bonjour à tous !

Nous sommes quatre étudiants en EI2 et pour le semestre 4, nous avons décidé de travailler ensemble sur le projet d’un ballon stratosphérique.

L’enjeu de ce projet était d’envoyer un ballon gonflé à l’hélium dans la stratosphère, de filmer le voyage et de récolter certaines données telles que la température, la pression, l’altitude, l’humidité et la quantité de CO2. De plus, nous devions nous rendre auprès des classes de quatrième du collège Clément Janequin, à Avrillé, afin de leur expliquer notre travail et de leur donner envie d’étudier les sciences.

Notre ballon et de notre chaîne de vol lors du lancer

Notre ballon et de notre chaîne de vol lors du lancer

Ce projet est un projet complexe, qui nécessite des compétences dans de nombreux domaines. Avant de commencer à travailler dessus, nous ne savions notamment pas qu’il fallait demander des autorisations, parfois plus de trois mois avant le lancer. Voici les différentes autorisations que nous avons dû demander :

  • DGAC (Direction Générale de l’Aviation Civile) !! Vous ne pouvez pas envoyer un objet traversant les voies aériennes quand vous voulez, où vous voulez !!

  • L’autorisation du Maire d’Avrillé pour lui demander son accord pour lancer notre ballon depuis le Stade Delaune d’Avrillé

  • Autorisation d’occupation du domaine public avec l’accord de la DGAC et du Maire, auprès de la Police Municipale d’Avrillé.

Dans notre nacelle, nous avions décidé de mettre deux GoPro afin de filmer le vol de la nacelle, deux capteurs de température (intérieur/extérieur), un capteur dit Baromètre mesurant la pression, l’altitude, l’humidité, un capteur GPS pour enregistrer la trajectoire de notre matériel, et un capteur de CO2.

De plus, pour retrouver tout cela une fois retombé sur terre, nous avions placé un traceur GPS ainsi qu’un téléphone connecté à un compte Google. Tous deux devaient nous communiquer leur position.

Ici vous pouvez voir l'intérieur de notre nacelle, comprenant les systèmes GPS ainsi qu'Arduino et son alimentation

Ici vous pouvez voir l’intérieur de notre nacelle, comprenant les systèmes GPS ainsi qu’Arduino et son alimentation.

Nous avons fait un exposé le lundi 13 mai 2019 auprès des classes de quatrième du collège Clément Janequin d’Avrillé, afin de leur expliquer notre projet en sachant qu’ils allaient assister au lancement de notre ballon. Cet exercice était assez intéressant puisqu’il nous a permis de pouvoir nous exprimer devant des groupes d’une cinquantaine de personnes, de devoir apprendre à expliquer simplement des concepts pouvant être compliqués à comprendre pour un niveau de quatrième (la notion de forces par exemple).

La date du jeudi 6 juin 2019 pour le lancement était prévue depuis le début du projet. Après avoir installé tout notre matériel au stade Delaune, nous avons appelé les collégiens pour qu’ils assistent à ce moment mémorable. Tout s’est bien passé, et notre ballon a décollé bien plus rapidement que ce à quoi nous nous attendions.

Lundi 6 juin, Stade Delaune Nous étions en train d'installer tout le matériel nécessaire, ici en train de gonfler le ballon. Il fallait le maintenir avec un drap afin qu'il ne s'envole pas de suite.

Lundi 6 juin, Stade Delaune, Avrillé
Nous étions en train d’installer tout le matériel nécessaire, ici en train de gonfler le ballon. Il fallait le maintenir avec un drap afin qu’il ne s’envole pas de suite.

A l’aide d’une simulation réalisée sur Internet, nous savions que notre matériel devait se rendre dans la Mayenne, et atterrir aux alentours de Vaiges, mais plein de critères étaient pris en compte et la précision de cette simulation n’était pas optimale.

Itinéraire entre le Stade Delaune d'Avrillé et Vaiges

Itinéraire entre le Stade Delaune d’Avrillé et Vaiges

 

A la recherche de notre matériel, Vaiges

A la recherche de notre matériel, Vaiges

Lancer ce ballon présentait certains risques. :

  • Traverser des voies aériennes nécessitait l’autorisation de la DGAC !

  • Il faut également savoir qu’en prenant de l’altitude, les températures peuvent descendre jusqu’à -60°C, ce qui est mauvais pour les batteries ! Pour cela notre nacelle était fabriquée en polystyrène extrudé, recouverte d’une couverture de survie. De plus, nous avions mis des chaufferettes à l’intérieur.

  • La chute du matériel n’est pas contrôlée. La nacelle peut très bien retomber sur une route et causer un accident, tomber dans l’eau, ou pire… en zone blanche, tout en sachant que nos deux systèmes GPS requièrent du réseau mobile afin de nous envoyer leur position. Le téléphone nécessite également des données mobiles afin de communiquer sa position sur une carte.

Malheureusement, 24 heures après le décollage… toujours aucune nouvelle…

C’est alors que commence notre longue et triste histoire… Sans nouvelle de notre nacelle, nous avons commencé par contacter les journaux. Quelques jours plus tard, nous retrouvions déjà notre avis de recherche sur plusieurs journaux (ici Ouest France) et même à la radio (ici Hit West) ! (une petite erreur de prénom, mais on n’a pas tout ce qu’on veut dans la vie…)

C’est alors que les témoignages fusent, mais aucun ne correspond à notre matériel…

C’est dans l’attente d’un signe de vie de notre nacelle  que nous vous quittons.

Nous vous avions prévenu, bien que nous ayons acquis de nombreuses compétences, cette histoire n’est pas des plus joyeuses.

 

Muscle artificiel via origami

Lien

    Bonjour à tous !

Nous sommes trois étudiants de Peip2, dans le cadre de nos études nous avons choisi de travailler sur les muscles via la technique de l’origami dans le but de trouver de nouvelles formes de liaisons mécaniques. Durant ce projet, nous avons été accompagné par M. Verron.

Les muscles artificiels via origami sont des objets techniques imaginés par un travail collaboratif entre l’université d’Harvard et du MIT. Créés dans l’objectif de trouver une alternative aux moteurs électriques couramment utilisés, ces muscles pourraient être une solution en terme de rendement et de masse de système.

La première étape de ce projet était de s’approprier les travaux déjà entamés du MIT afin de comprendre les principes de base de la mécanique des fluides et de la mécanique du solide. Le but étant de s’approprier les mouvements créés par les différentes formes origamiques.

Pendant ce projet, nous avons décidé de travailler sur plusieurs formes d’origami afin de créer différents mouvements pour nos prototypes. En expérimentant tout d’abord avec des matériaux de récupération, nous nous sommes ensuite aidé du logiciel solidworks pour la modélisation des embouts et des structures internes au muscle.

Embout Grappin triangle et trapèze pour la structure.

Embout Grappin triangle et trapèze pour la structure.

Les prototypes que nous avons expérimentés sont construits de la manière suivante :

Conclusion :
Nous avons été très satisfait de ce projet tout au long de son déroulement. Il a représenté pour nous un défi technique intéressant car nous voulions créer des muscles intéressants technologiquement mais aussi visuellement. Le coté démonstratif était important car nous pensons qu’il serait intéressant de présenter de tels objets lors des portes ouvertes de l’école pour représenter l’option QIF.

Projet InMoov

Bonjour,

Nous sommes des étudiants de deuxième année du cycle préparatoire de Polytech Angers. Dans le cadre de notre projet de fin d’études nous avons choisi le Projet InMoov.

Dans la réalité le robot InMoov est un projet en OpenSource c’est-à-dire un projet où chacun peut apporter sa contribution. Il est possible d’imprimer le robot sur des petites imprimantes 3D.

Dans notre projet il nous a été demandé d’animer le robot sur Unity, un logiciel d’animation 3D en temps réel, très souvent utilisé dans la création de jeux vidéo, d’animation et d’architecture.

Nous avons tout d’abord commencé par intégrer les packages du robot et de l’arrière-plan dans Unity.

robot1

Description

Après une étude du mouvement du robot nous avons décidé d’utiliser un solveur qui aligne l’articulation avec l’effecteur final. Ce qui nous permet de contrôler entièrement chaque articulation sans avoir à se soucier des différents axes de chaque objet. Nous avons réussi à animer la bouche pour simuler la parole.


Nous l’avons ensuite animés d’une autre manière en le faisant ce déplacer dans l’espace en esquivant les obstacles comme les barres d’escaliers. En effet, il suivant en empruntant le chemin le plus court une petite sphère qui se déplaçait elle aussi en autonomie grâce à un script. Ensuite, nous avons intégré la commande vocale à notre projet, ce qui nous a permis de commander notre robot avec nos voix. Encore une fois, c’est grâce à un script que le robot reconnaissait nos voix et se déplaçait par la suite. De plus nous avons intégré le capteur Tobii, qui a rendu possible le mouvement des yeux du robot, de cette manière ces derniers arrivaient à suivre la caméra. Pour finir, en associant le casque oculus à Unity nous avons inclus la réalité virtuelle à tout cela. Ceci nous a donc permis de piloter notre robot depuis son corps comme si nous étions réellement à sa place.

Projet Dumbell-Pong

Bonjour à tous, nous sommes trois étudiants d’EI2 ayant pour projet la réalisation d’un jeu de Pong à 4 joueurs.

Présentation du Projet :
Le but de ce projet est de réaliser un jeu vidéo permettant à un ensemble de personnes d’interagir sur ce dernier. Le cahier des charges est le suivant :
• Développement du jeu de Pong à l’aide du logiciel Processing.
• Utilisation du périphérique Makey-Makey.
• Apport d’un côté ludique au jeu.

Le langage :
Processing est une bibliothèque Java et un environnement de développement libre. Ce logiciel est tout particulièrement adapté à la création plastique et graphique interactive, il était donc parfait pour notre jeu de Pong.

Processing

Environnement de Processing

Nous nous sommes donc formés gratuitement grâce à OpenClassrooms (10h) de sorte à nous initier à la programmation sur Processing.

Le MakeyMakey :
Le MakeyMakey est un dispositif d’émulation de clavier à partir d’objets du quotidien : la manipulation de tout objet conducteur relié au MakeyMakey va envoyer un signal à un ordinateur, qui réagira avec la fonction que vous avez défini, en fonction du logiciel que vous utilisez.

http://labenbib.fr/index.php?title=Makey_Makey

www.youtube.com/watch?v=rfQqh7iCcOU

La conception :
Nous devions dans cette partie surtout imaginer comment associer notre jeu de Pong à l’interface Makey-Makey.
Après réflexion nous avons décidé d’associer des poids de musculation au jeu. C’est-à-dire qu’en soulevant son poids de musculation, le joueur pourrait déplacer sa barre de jeu ; (chacun des joueurs aura deux poids correspondant à Gauche et Droite), donc un total de 8 poids.

La réalisation :
1. Programmation
Cette étape a consisté à s’inspirer de code déjà écrit.

Pong 4 Joueurs développé avec Processing

Pong 4 Joueurs développé avec Processing

C’est là d’ailleurs, que nous avons trouvé la première étape de notre jeu : il y a en effet un Pong 1 joueur expliqué en détail et c’est à partir de ce fichier que nous avons adapté notre jeu pour en créer un avec quatre joueurs. Un en haut, en bas, à droite et à gauche. Mais en gardant une seule balle.
Nous avons ensuite essayé d’augmenter la vitesse de la balle de manière permanente. Puis progressivement, de cette manière plus l’échange durait, plus la difficulté augmentait.
Nous avons aussi modifié les rebonds, pour que l’angle incident de la trajectoire de la balle avec le rectangle influe sur l’angle réfléchi.

2. Le guidage
Dans cette partie il a fallu surtout fabriquer une base portant le poids de musculation, relié au Makey-Makey qui permettrait au joueur d’interagir avec sa barre de jeu.
Nous avons donc imaginé le dispositif suivant :

Guidage Joueur Dumbell-Pong

Face arrière du guidage pour le joueur

Il faut brancher les fils sur les pointes (1) et (2).

Face Avant Guidage

Face Avant Guidage Joueur

Ainsi en soulevant le poids relié à la corde, (1) et (2) ci-dessus se touchent et créent le contact auquel réagit le MakeyMakey et fait donc bouger la barre du joueur de Pong.

Rendu Jeu + Guidage

Rendu Jeu + Guidage

Il suffit donc de relier les poids aux 2 cordes puis jouer.

Conclusion
Ce projet nous a permis de mieux appréhender le travail d’équipe, d’apprendre à se répartir les tâches, respecter un cahier des charges et des échéances.
Au final nous avons pu réaliser un prototype de jeu, auquel il est encore possible d’apporter des améliorations et d’optimiser.

Gestionnaire de poulailler

Bonjour à tous !

Dans le cadre de notre deuxième année en cycle préparatoire intégré en école d’ingénierie nous avions à réaliser un projet. Le nôtre était la conception d’une maquette d’un gestionnaire de poulailler. Avant de commencer à vous le présenter, voici une petite devinette : Quelle est la suite de chiffres préférée des poules ? (Réponse à la fin de l’article)

poules

Présentation du projet :

L’élevage de poules comprend des contraintes que notre projet tend à réduire. L’objectif étant que les tâches quotidiennes nécessaires à cette activité soient automatisées. C’est-à-dire que nous devons pouvoir :
• contrôler le niveau d’eau présent dans l’abreuvoir
• contrôler la quantité de nourriture dans la mangeoire
• gérer l’ouverture et la fermeture de la porte en fonction de l’heure

Le tout doit être également supervisé à distance par le propriétaire.

Mise en place du projet :

Nous avons dans un premier temps fait des recherches générales sur les différentes parties qui composent notre projet afin de trouver la meilleure façon de répondre aux besoins et de voir comment s’organiser. Ces recherches entre autres, nous ont permis de réfléchir aux composants à utiliser.

Notre planning était donc le suivant :
1. Réalisation de la mangeoire
2. Réalisation de l’abreuvoir
3. Gestion du nombre de poules
4. Gestion de la porte
5. Supervision à distance

Elaboration du projet :

    1. La mangeoire :

Une poule mange en moyenne 125 g de nourriture par jour. Pour automatiser sa distribution nous avons décidé d’utiliser une vis sans fin qui sera entrainée en rotation par un moteur. Grâce à un programme réalisé sur Arduino nous le faisons tourner pendant un certain temps afin d’avoir la quantité de graines voulue. Par ailleurs, les poules sont nourries 2 fois dans la journée, nous avons donc utilisé un module horloge pour pouvoir gérer les horaires.

Module horloge

Module horloge

Enfin, nous avons positionné un capteur à ultrasons sur le couvercle de la mangeoire afin de pouvoir vérifier le niveau de graines restant.


Avant la fabrication nous avons eu une phase de modélisation de la mangeoire sur SolidWorks.

Modélisation SolidWorks de la mangeoire

Modélisation SolidWorks de la mangeoire

Nous avons ensuite réalisé la vis sans fin grâce à l’imprimante 3D et la mangeoire à partir de planches en bois.

Impression 3D de la vis et photo de la mangeoire

Impression 3D de la vis et photo de la mangeoire

    2. L’abreuvoir :

Nous avons choisi de réaliser un abreuvoir autonome. Celui-ci est muni d’un capteur de niveau d’eau afin de surveiller la quantité d’eau restante et prévenir le propriétaire du poulailler s’il n’en reste plus.
Nous avons mis un flotteur qui permet de bloquer l’arrivée d’eau quand le bac où boivent les poules est plein.

Schéma et conception de l'abreuvoir

Schéma et conception de l’abreuvoir

Pour notre maquette nous avons réalisé la réserve d’eau grâce à un bidon agricole de 5 litres.

    3. Le comptage de poules :

Afin de connaitre le nombre de poules présentes dans le poulailler et pouvoir fermer la porte quand elles s’y trouvent toutes, nous avons décidé d’utiliser deux capteurs infrarouges.
Un est installé à l’intérieur du poulailler et l’autre à l’extérieur.

Schéma du positionnement des capteurs infrarouges

Schéma du positionnement des capteurs infrarouges

    4. Gestion de la porte/ Supervision à distance :

Nous avons fait les recherches théoriques sur ces deux parties mais malheureusement le manque de temps ne nous a pas permis d’aboutir à la réalisation de celles-ci.

    5. Modélisation du poulailler :
Modélisation SolidWorks du poulailler

Modélisation SolidWorks du poulailler

Nous tenions a remercié notre tuteur Mr Perthué ainsi que Mr Bouljroufi et Mr Mercier pour leur aide et ce qu’ils nous ont permis d’apprendre durant le projet.

Merci pour votre lecture !

Blaise Léo et Jolivet Caitlin

PS : la réponse est : 444719

Projet : Liaisons cinématiques LEGO®

Conception de pièces de liaisons adaptables sur pièces LEGO®

Rendu final des pièces

Rendu final des pièces

Nous sommes 3 élèves : Felix Bessonneau, Colin Fléchard et Dorian Clermont, issus du cycle préparatoire de l’ISTIA en 2ème année en charge d’un projet :
Ce projet Ei2 sur les liaisons mécaniques LEGO® s’inscrit dans le cadre de notre 4ème semestre, dans l’unité d’étude n°5 : Projets de conception.
Il fait suite aux difficultés rencontrées lors des cours de Génie Mécanique de 3ème année qui utilisaient les LEGO® afin de faciliter la compréhension des schémas cinématiques : en effet certaines liaisons n’étaient pas réalisables de façon simple.
Il s’agit là donc de travailler sur des LEGO® : quoi de plus amusant que ça ?
Modélisation complexe d’une liaison hélicoïdale en LEGO

Modélisation complexe d’une liaison hélicoïdale en LEGO

La liaison glissière :

La première idée était de faire une pièce compatible avec les pièces classiques de Lego®. Le premier prototype consistait donc à faire une longue brique creuse avec à l’intérieur une pièce qui coulissait afin de jouer le rôle de glissière. Cette pièce pouvait accueillir une barre en croix. Ainsi la barre était guidée dans la brique ce qui réalisait bien une liaison. Cependant le guidage laissait à désirer et nous avons décidé de nous orienter sur une compatibilité “Lego® Technic”. Il fallait donc repartir de zéro pour créer une nouvelle pièce plus simple. La nouvelle idée était d’avoir une pièce capable de guider une barre en croix avec une seule pièce. Nous avons donc pensé à une cavité capable de guider la barre en croix et en même temps de s’accrocher à une prise femelle cruciforme.
Liaisons glissières (à droite la pièce finale)

Liaisons glissières (à droite la pièce finale)

La liaison hélicoïdale :

Tout comme la liaison glissière, l’idée première était de partir sur un bâti adapté aux briques Lego® avec en son centre un perçage de forme hélicoïdale. La première difficulté a été d’adapter ce perçage à la vis sans fin déjà existante dans les pièces Lego®. Une fois la pièce finalisée (et de nombreux essais infructueux) nous avons décidé en même temps que pour la glissière de refaire le bâti pour le rendre compatible aux Lego® Technic.
Pour cela nous avons opté pour 2 prises femelles cruciforme de chaque côté du perçage, ce qui est beaucoup plus économique niveau matière, et plus stable dans un montage.
Liaisons hélicoïdales (à gauche la pièce finale)

Liaisons hélicoïdales (à gauche la pièce finale)

La liaison rotule :

La liaison rotule faisait partie des liaisons existantes en Lego® mais sous forme inadaptée à la modélisation de mécanisme. En effet il existe des sortes de rotule chez certains modèles de Lego® comme les Bionicles pour ne citer qu’une gamme de produit, mais celles-ci n’offrent pas un mouvement efficace ou une adaptabilité optimale.
Pour la création de cette liaison, notre idée fut de créer une sphère et un socle emboîtés l’une dans l’autre. Nous savions que l’imprimante 3D permettait l’impression d’une pièce dans une autre, nous en avons donc profité. Pour l’adaptabilité de cette pièce nous avons choisis des embouts cruciformes mâles pour la sphère et le socle. Nous avions trouvé les dimensions Lego® des pièces cruciformes mâles sur internet, nous les avons donc reportées sur Solidworks. La difficulté principale était la détermination du jeu entre la sphère et son socle, celui-ci devait être assez grand pour que la matière friable de l’imprimante 3D puisse être retirée mais assez petit pour empêcher les deux pièces de se séparer l’une de l’autre trop aisément.
Liaison rotule

Liaison rotule

Difficultés et problèmes rencontrées :

Evidemment nous avons dû faire face à plusieurs problèmes : par exemple lors de l’impression, ou lors de la gestion du jeu des pièces (par exemple pour la glissière : la pièce intérieure devait pouvoir coulisser dans le bâti sans problème).
Nous avons aussi eu quelques difficultés : notamment la complexité des pièces à concevoir sur SolidWorks (perçage de la pièce hélicoïdale).
Nous avons également eu des soucis au niveau de l’impression, comme une coupure de courant, ou encore une erreur d’impression inexpliquée, que vous pouvez voir ci dessous:
Pièces mal imprimées (quasiment coupées en deux)

Pièces mal imprimées
(quasiment coupées en deux)

Les différents montages réalisés :

Pour la première phase de recherche des liaisons complexes, nous avons dû effectuer certains montages mécaniques plus ou moins basiques. Pour cela nous avions à notre disposition plusieurs schémas cinématiques, tel que la cale réglable, le sinusmatic, la pince schrader, ou encore un système de pompe à piston.
Nous avons passé quelques heures à réaliser ces schémas afin d’étudier quelles liaisons allions-nous devoir concevoir. C’est ainsi que nous avons remarqué que la glissière et la rotule étaient difficiles à modéliser sur le sinusmatic par exemple.
Exemple du montage : Pince Schrader

Exemple du montage :
Pince Schrader

Complexité visible de la rotule & glissière

Complexité visible de la rotule & glissière

Et afin de vérifier que nos pièces conçues remplissaient leur rôle, nous avons refait quelques uns de ces montages afin de montrer qu’ils étaient plus simples à construire.
Sinusmatic :  Montage initial montage final

Sinusmatic :
Montage initial
Montage final

Pompe avec piston :  Montage initial (gauche) montage final (droite)

Pompe avec piston :
Montage initial (gauche)
Montage final (droite)

Cale réglable :  Montage initial Montage final

Cale réglable :
Montage initial
Montage final

Pour conclure sur ce projet, nous pouvons dire que nous l’avons beaucoup apprécié pour les nouvelles méthodes que cela impliquait : notamment le travail en quasi-totale autonomie.
Nous remercions aussi M.Verron qui a toujours été très agréable et très pédagogue !

Le télégraphe électrique

Le télégraphe est une invention incroyable qui a révolutionné l’art de communiquer à distance. Il a été utilisé pendant plusieurs années pour envoyer des messages rapidement et à longue distance à partir du code morse, le fameux code constitué de points et de traits . Notre objectif a donc été de recréer un télégraphe électrique fonctionnel en intégrant uniquement des composants analogiques sans aucune trace de composants numériques comme dans l’ancien temps.

L’histoire du télégraphe de morse

Le télégraphe Morse fut le premier télégraphe pratique et il fut l’un, si ce n’est des plus employé.

Le principe des télégraphes enregistreurs est de sauvegarder une trace des dépêches transmises. Lorsque l’opérateur appuie sur le manipulateur, le courant passe et est reçu par le récepteur. Ce dernier est interrompu dès que l’on relâche le levier. Quand un courant arrive, l’électro-aimant est attiré et repoussée grâce au ressort de rappel suivant les ouvertures et fermetures du courant. Il porte une pointe qui appuie sur une bande de papier. Ainsi, la longueur de la trace laissée sur le papier dépend de la durée du passage du courant. Il permet ainsi à l’opérateur de ne pas rester devant l’émetteur à attendre que le message arrive. C’est le code morse qui est utilisé pour transmettre les messages :

télégraphe de morse enregistreur

télégraphe de morse enregistreur

Le code morse, breveté en 1840 par Samuel Morse, est fondé sur l’utilisation de « traits » et de points. Ce code est pratique, car il peut être utilisé de manière auditive, visuelle (lampe), ou électrique. Un trait dure trois points. On sépare les différents signes d’une lettre par la durée d’un point, les différentes lettres par la durée de trois points et les différents mots par la durée de sept points.

Les étapes de la réalisation
Lors de la réalisation de notre projet, nous sommes tout d’abord passés par une phase de recherche pour découvrir plus en profondeur le fonctionnement du télégraphe, et ensuite par une étape de réalisation où nous allions produire tous les composants.

-Le manipulateur morse
Le manipulateur est une pièce maîtresse car c’est elle qui permet l’émission du message. En effet il n’y a qu’à appuyer sur le manipulateur morse pour que deux éléments conducteurs étant relier a des fils électriques se touchent et permettent le passage du courant vers le récepteur. Il a été décidé de le réaliser à partir d’une imprimante 3D car le résultat allait être plus précis. La connexion se fait part des simples vis qui lorsqu’elles se touchent permettent le passage du courant. De plus le manipulateur doit pouvoir revenir à sa position initial, un ressort était donc nécessaire.

manipulateur morse à l'imprimante 3d

manipulateur morse à l’imprimante 3d

-Le récepteur
La fabrication du récepteur se fait en fonction du type de signal en sortie. On avait le choix entre émettre un signal sonore ou essayer de faire en sorte que le message soit enregistré sur une bande de papier. Le choix le plus simple était d’émettre un signal sonore et donc nous avons utilisé un haut parleur. Seulement pour qu’il fonctionne, il faut faire vibrer la membrane de celui-ci. Or la tension qui sort d’une pile est continu, donc il fallait la modifier en tension alternative. La première étape du récepteur était donc de créer un oscillateur basse fréquence pour transformer le signal continu en alternatif. Un modèle d’oscillateur trouvé sur internet à été retenu et nous avons réalisé une carte imprimée pour pouvoir souder les différents composants.
Une fois le circuit fini et fonctionnel, il ne restais plus qu’à réunir tous les composants fonctionnels dans une enceinte. A cet effet, un interrupteur entre le circuit et la pile permet de mettre l’appareil sous tension, et un connecteur permet de brancher deux fils pour les relier au manipulateur. L’enceinte permettait ainsi d’amplifier le signal sonore de sortie en faisant office de caisse de résonance.

récepteur morse sonore

récepteur morse sonore

Le résultat final

Pour illustrer le résultat obtenu, voilà une vidéo présentant le message international de signal de détresse: le SOS

Remerciement à Mr. Bouljroufi et Mr. Autrique pour leur apport lors de notre projet

Jeremy CHOPIN, Ghislain GANDON, Alexis GONTIER, Mathieu METZ

Projet: Conception d’un capteur connecté pour la mesure de la hauteur d’eau d’un ruisseau

Notre projet a eu pour but de créer un système capable de récupérer le niveau d’eau d’un ruisseau et de l’afficher sur un site internet. Cette idée a été proposée afin de permettre aux jeunes écoliers de l’école publique du Brionneau, à la Meignanne, d’étudier le cycle de l’eau via un cas concret.

Pour le réaliser, nous avons distingué cinq grandes parties:

  • Le positionnement du système
  • La prise des données
  • L’envoi des données
  • La réception des données
  • L’affichage des données

Intéressons nous à présent à leur contenu.

      Le positionnement du système

    Après maintes recherches et après avoir trouvé les plus et les moins des différentes solutions possibles, nous nous sommes enfin arrêtés sur une :

    Le capteur est situé au milieu du ruisseau. Dans la boite en bois, on retrouve tout les éléments indispensable au bon fonctionnement du capteur :

    Boîte contenant le sonar, l'arduino, la batterie et l'antenne Sigfox

    Boîte contenant le sonar, l’arduino, la batterie et l’antenne Sigfox


    La boite est maintenue en hauteur grâce à des pilotis.

      La prise des données

    Pour la prise des données, nous avons opté pour un sonar. Cette solution permet de faciliter l’installation et d’obtenir une précision plus que raisonnable (1cm/2m).

      L’envoi des données

    Le choix s’est porté sur la technologie Sigfox. Il s’agit d’une entreprise qui utilise un réseau de haute fréquence permettant l’envoi d’un nombre de données restreint sur une très grande portée, ce qui nous convient car nous avons besoin de mesurer seulement 6 hauteurs d’eau par jour (1 toutes les 4 heures). Ces hauteurs sont ensuite hébergées sur le site de Sigfox et nous n’avons plus qu’à les récupérer.

      La réception des données

    Pour récupérer ces données cela se gâte un peu plus… L’idée a été de créer un programme afin d’acheminer les différentes valeurs prises dans la journée jusqu’à une base de données que nous avons créée. Sans trop rentrer dans les détails, voici comment se décompose le programme : On se connecte à sigfox, on récupère nos données (la hauteur, la date et l’heure, et tout un tas d’autres données générées par sigfox), on les filtre afin de n’avoir que celles qui nous intéressent et on les envoie sur notre base de données.

      L’affichage des données

    Nous nous sommes ensuite penché sur la question de comment afficher les hauteurs récupérées. Pour cela on a créé un site internet le plus ludique possible (n’oublions pas que nous travaillons pour des enfants ! ). Celui-ci propose :

    • une page d’accueil avec les 20 dernières valeurs prises ainsi que la hauteur moyenne qui en résulte;
    • une seconde page avec un graphique ou l’on peut suivre l’évolution du niveau d’eau du ruisseau journalière/ hebdomadaire / mensuel / annuel ou encore d’une date à une autre (cela dans le but de laisser un maximum de flexibilité). Ils auront également la possibilité de récupérer une image des graphiques qu’ils peuvent observer;
    • et enfin une dernière afin de nous présenter.
    Page d'accueil de notre site internet

    Page d’accueil de notre site internet

    Pour terminer nous avons décidé de faire participer les enfants dans notre projet (car c’est un peu le leur aussi!). Ils ont ainsi pu décorer la boîte comportant notre système, et faire une pancarte explicative indiquant le pourquoi du comment d’une telle installation.

    Ce projet nous a permis d’acquérir des connaissances en matière de programmation mais également en terme de présentation orale. En effet nous avons du simplifier des termes technologiques pour les rendre accessibles à des enfants de 7 à 10 ans.

    Ces derniers et nous mêmes sommes fiers du résultat et espérons qu’il sera utilisé pour de nombreuses années!

    Petit bonus : voici la vidéo de l’installation de notre capteur :
    Installation du capteur

    JAUNAULT Doriane, SANCHEZ Denis, RAILLARD Julien et GABORIAU Romane