Projet “Serrure customisée”

Bonjour à tous et toutes,

Nous sommes un groupe de trois étudiants de Polytech Angers en deuxième année Mélinda FABIEN, Lino TOURET, Hugo LEGENDRE. Dans le cadre d’un projet pédagogique, l’école souhaite créer une “armoire à énigme” possédant plusieurs modules. Parmi ceux-ci, une serrure customisée a été demandée.

20210611_174949

  • Introduction
  • Le but de ce projet est de créer une serrure capable d’être déverrouillée par plusieurs clés. Il faut que cette serrure soit assez complexe pour éviter la méthode “force brute” permettant de trouver le bon mot de passe en testant toutes les combinaisons.

    Nous avons donc divisé notre travail en trois parties. Premièrement, nous avons étudié les différentes possibilités concernant les types de capteurs à étudier. Cette étude nous permet d’analyser la demande et de trouver la solution la plus simple pour y répondre.

    Ensuite, nous sommes passés à la phase de développement. Nous avons testé les différents capteurs et formats de clé. Lors de cette étape, nous avons visualisé grâce au logiciel de CAO “Onshape”, notre future boîte ainsi que les possibles futurs emplacements des capteurs.

    Pour finir, nous avons fabriqué la boîte et mis en place les capteurs.

    Continuer la lecture

    Développement d’un robot mobile pour la recherche en cartographie

    Bonjour, nous sommes deux étudiants en deuxième année préparatoire intégrée de Polytech Angers. Nous avons décidé de nous lancer dans la conception d’un robot mobile de cartographie, enfin pour être plus précis dans l’élaboration de son châssis. Le but est d’avoir un robot qui puisse accueillir différents capteurs pour acquérir des données, pour par exemple avoir une représentation 3D de l’intérieur du bâtiment de Polytech Angers.

    Un robot comme celui-ci dans le milieu professionnel peut avoir plusieurs utilisations. Par exemple, nous avons découvert dans nos recherches un robot aspirateur qui cartographie votre maison pour pouvoir mieux la connaitre et mieux l’aspirer. Vous imaginez donc qu’il y a d’autres utilisations possibles.

    Il y a eu plusieurs étapes durant la réalisation de ce projet. On a dû d’abord préparer les bases.

    Les schémas fonctionnels :
    Nous avons eu un cahier des charges à respecter. Le robot devait faire une certaine taille, pouvoir accueillir un certain nombre de capteurs plus ou moins différents, etc.
    Il a fallu faire des schémas fonctionnels, pour savoir comment aller communiquer les différentes parties du robot et aussi pour définir ces parties. On a donc eu accès aux fiches techniques des moteurs, de la carte mère et des capteurs pour pouvoir savoir comment tous ces éléments allaient communiquer.

    Ici on voit comment les différents éléments communiquent entre eux

    Ici on voit comment les différents éléments communiquent entre eux

    Le dimensionnement de la batterie :
    Après avoir réalisé ces schémas, on avait accès à pas mal d’informations techniques sur les différents éléments. On a donc pu dimensionner la batterie, c’est-à-dire savoir quel voltage et quelle intensité il fallait pour que le robot fonctionne pendant une durée déterminée. Pour cela, nous avons donc pris les informations techniques de chaque composant et fait un calcul.

    Grâce à Excel on a pu rentrer différentes informations et avec des formules trouver les bonnes dimensions pour la batterie.

    Grâce à Excel on a pu rentrer différentes informations et avec des formules trouver les bonnes dimensions pour la batterie.

    Ici, on avait besoin de 30 minutes d’autonomie et l’on arrive à 5400 mAh, ce qui équivaut à environ deux fois la batterie d’un téléphone moyen. On arrivait aussi à un certain voltage et à une certaine tension, on a donc dû trouver des convertisseurs pour alimenter les différents composants du robot, car ils n’ont pas tous besoin de la même tension/courant.

    La CAO :
    La plus grosse partie du projet. On avait posé les bases, il fallait ensuite élaborer le corps de ce robot. On a donc utilisé un logiciel de CAO pour faire cela. On voulait faire un robot à plusieurs étages avec une petite tour tout en haut pour accueillir le capteur le plus important, le Lidar. On voulait faire un étage inférieur pour accueillir les moteurs, la batterie et la carte mère, puis un étage supérieur avec plusieurs emplacements pour pouvoir poser différents capteurs.

    Le premier résultat que nous avions à montrer avec en bleu la petite tour surmontée du Lidar.

    Le premier résultat que nous avions à montrer avec en bleu la petite tour surmontée du Lidar.

    Après consultation avec nos professeurs, il y avait plusieurs défauts à corriger. Les deux gros points à corriger étaient l’emplacement des capteurs qu’on devait centraliser puis aussi l’originalité, car notre châssis n’apportait rien de spécial. On est donc reparti trouver des idées et après plusieurs essais, on a enfin trouvé une bonne solution pour corriger tous les défauts. On a donc décidé de changer la forme pour faire un robot avec une forme plus ovale, avec les deux roues motrices au centre, pour pouvoir avoir un réel centre pour placer les capteurs. Aussi, on a pris la décision de faire étage inférieur pour les moteurs et la batterie, puis un étage moyen pour la carte mère. Enfin, on a pensé à un troisième étage qui accueillerait un tour modulaire qui elle-même accueillerait les différents capteurs.

    La nouvelle proposition du robot, avec en vert la carte mère, en marron foncé les différents étages à capteurs.

    La nouvelle proposition du robot, avec en vert la carte mère, en marron foncé les différents étages à capteurs.

    Le principe de cette tour, c’est d’avoir des étages qui s’emboitent facilement, sans vis et sans collage, pour pouvoir en enlever ou en rajouter à notre guise.

    Ici on voit une vue éclatée des étages à capteurs avec en marron les troncs, et en violet les "terrasses" à capteurs.

    Ici on voit une vue éclatée des étages à capteurs avec en marron les troncs, et en violet les “terrasses” à capteurs.

    Ces différents étages auraient donc des trous où l’on pourrait emboîter n’importe quel capteur existant, il suffirait de créer un petit adaptateur à chaque fois.
    Le capteur en gris a son adaptateur en bleu qui s'emboîte dans la "terrasse" à capteurs

    Le capteur en gris a son adaptateur en bleu qui s’emboîte dans la “terrasse” à capteurs

    Pour finir, on a fait un adaptateur pour le Lidar pour qu’ils puissent s’emboîter tout en haut de la tour, quel que soit le nombre d’étages. Aussi une petite astuce pour pouvoir faire passer les différents fils entre la carte mère et les capteurs a été de creuser des demi-cercles tout autour des troncs.

    On voit ici en vue du dessus que même tout en haut de la tour on a accès à la carte mère en vert plusieurs étages plus bas.

    On voit ici en vue du dessus que même tout en haut de la tour on a accès à la carte mère en vert plusieurs étages plus bas.

    Conclusion :
    Pour finir le robot, il aurait fallu avoir plus de temps pour réaliser les différentes pièces nécessaires. Le but était de réaliser un châssis qui puisse accueillir différents capteurs et l’on a pu au moins le concevoir en CAO. Le travail des prochaines équipes, s’il y en a, sera de le construire et de le faire rouler, pour acquérir différentes données. Grâce à ce projet, nous avons appris beaucoup sur la conception d’un robot, et toutes les contraintes mécaniques et électroniques que cela implique. La plus grande difficulté sera celle d’avoir eu besoin de se remettre à l’utilisation d’un logiciel de CAO, mais c’est revenu avec le temps. On aurait aimé pouvoir construire le robot et pouvoir toucher à la partie informatique/électronique plus en profondeur, mais cela sera pour une autre équipe d’étudiants.

    Merci d’avoir lu notre article !

    Par Antoine Verin et Macine Benmansour.

    Projet Rubiks Cube 2021 Antoine Nolan Nicolas

    Présentation du projet:

    Bonjour, nous sommes Antoine Nicolas et Nolan, étudiants en deuxième année préparatoire intégrée de Polytech Angers. Dans l’objectif de réaliser une armoire à énigmes pour le futur escape Polytech nous étions chargés de concevoir une de ces énigmes qui n’était autre que la résolution d’un Rubik’s Cube. Il ne fallait pas simplement résoudre le Rubik’s Cube à la main (ce serait trop simple) mais il fallait le résoudre à l’aide d’un robot qui ferait tourner ces faces grâce à des boutons.

    rubik's cube

    Phase de conception:

    Nous avons aussi pensé à la manière dont nous allions faire tourner le Rubik’s cube. Nous avons opté pour 6 servomoteurs à rotation continue qui seront contrôlés par un Arduino. Ils ont l’avantage de pouvoir tourner comme son nom l’indique en continu et dans les deux sens de rotation contrairement à d’autres moteurs qui ne peuvent tourner qu’à 270°. Pour connaître la force qu’il faudrait exercer pour faire tourner les faces du Rubik’s cube, nous avons effectué des tests simples à Polytech, ce qui nous a permis d’avoir des servomoteurs suffisamment puissants et ainsi ne pas commander des servomoteurs inadaptés. Afin de créer une interface homme-machine affordante, nous avons pensé à des boutons qui auraient la même couleur que la face que l’utilisateur souhaite faire tourner. De plus, nous avons réfléchi à un switch qui permet de faire tourner les faces dans les deux sens. Nous avons également réfléchi à un boitier de contrôle qui permettrait de ranger l’Arduino et la breadboard afin d’avoir un rendu plus agréable à utiliser et à regarder. Enfin, nous avons pensé à mettre un miroir à l’arrière de la structure afin de voir le Rubik’s cube dans son ensemble.

    servomoteur

    Conception Assistée par ordinateur:

    Nous avons ensuite réfléchi sur la forme de la structure qui pourrait accueillir le Rubik’s cube. Nous avons opté pour trois formes différentes, chacune avec ses avantages et ses inconvénients. La première est simple à construire mais présente des problèmes pour accueillir les servomoteurs, il faut réaliser un porte-à-faux assez important afin d’aligner les moteurs avec le centre du Rubik’s cube. La seconde est simple à construire avec une installation facile des servomoteurs, mais les pièces pour la construire ne sont pas disponibles chez notre fournisseur ; il nous fallait des cubes qui puissent relier 4 barres pour former une croix. Enfin, la dernière structure est réalisable avec les pièces disponibles et permet de monter les servomoteurs. Cependant elle est relativement compliquée à monter car il est compliqué de centrer parfaitement les servomoteurs.
    Pour mieux visualiser nos idées, un travail de modélisation 3D a été effectué. Nous avons modélisé les pièces présentes sur le site du fournisseur à l’échelle quand les dimensions étaient disponibles. Cela nous a permis d’éviter des problèmes futurs, comme des erreurs de mesures, des problèmes liés à des dimensions inconnues…
    Voici les images de nos trois structures :

    tableau structure

    Code:

    Simultanément avec la modélisation 3D, nous avons créé le code Arduino qui nous permettra de faire pivoter nos faces suite à un appui sur un bouton. Le code est relativement simple, il fait tourner le moteur quand l’utilisateur appuie sur le bouton. Il y a en plus un délai entre chaque appui de bouton afin de ne pas faire tourner deux faces en même temps et de risquer de casser le Rubik’s cube.

    code

    Assemblage:

    Une fois la forme de la structure choisie et le code réalisé, nous avons commandé nos pièces et nous les avons assemblées pour commencer à faire des tests grâce à l’Arduino.
    Nous avons vissé les barres ensemble grâce à des cubes prévus à cet effet. Une fois cela fait, nous avons mis les servomoteurs dans leur support que nous avons fixés aux équerres. Ensuite, nous avons placé les équerres afin que l’axe de rotation des servomoteurs soit parfaitement aligné avec le centre des faces du Rubik’s cube. Pour tenir le Rubik’s cube, nous avons vissé des entretoises sur les servomoteurs. Ces entretoises sont ensuite mises en contraintes dans des bouchons en liège qui sont collés au centre des différentes faces du Rubik’s cube. En parallèle, nous avons ajusté le temps que mettaient les servomoteurs pour faire tourner les faces de 90°.
    Enfin, nous avons eu quelques idées afin de rendre le système plus ergonomique. Par exemple, nous avons pensé à créer une boîte dans le style des contrôleurs de borne d’arcade permettant d’accueillir l’Arduino et les boutons afin que les câbles soient rangés de façon optimale.

    structure et boitier

    strcuture assemblée (2)

    Problèmes rencontrés:

    Nous avons rencontré quelques problèmes lors de la conception et de la réalisation de notre projet. Pour commencer, évoquons les problèmes ayant attrait à l’aspect fonctionnel de notre projet. Notre première structure n’était pas adaptée pour faire tourner les faces avec les servomoteurs car il fallait les déporter sur une trop longue distance, ce qui aurait apporté des forces et des moments sur la structure et les servomoteurs supplémentaires, ce que nous voulions absolument éviter afin de faire tourner au mieux le Rubik’s cube. Pour la seconde structure, nous avons eu des problèmes concernant les pièces proposées par le fournisseur avec lequel nous devions travailler. Nous avons donc créé une nouvelle forme pour notre structure, ce qui nous a permis de monter les servomoteurs avec les pièces disponibles. Cependant, cette dernière a été très compliquée à construire car il faut être très précis dans l’installation de nos servomoteurs. Enfin, le problème reste que deux servomoteurs sont un peu déportés de l’axe du Rubik’s cube. Ce problème se corrige un minimum avec les supports de servomoteurs mais cela ne reste pas parfaitement centré.

    Nous avons également rencontré des difficultés liées à la logistique. Le temps de livraison de nos pièces a été très long. En effet, nous avons attendu un mois pour que les pièces nécessaires à la construction de la structure et les servomoteurs arrivent. Nous ne pouvions donc rien entreprendre de nouveau car nous ne pouvions pas savoir si de nouvelles difficultés allaient se présenter. Ce problème s’est réitéré avec un nouveau mois d’attente pour les dernières pièces qui nous manquaient.

    Nous avons aussi rencontré un problème concernant les servomoteurs car rien n’indiquait sur le site du fournisseur leur manière de fonctionner, c’est-à-dire que nous ne savions pas qu’ils ne se contrôlaient que par la vitesse et non grâce à sa position angulaire. Nous avons donc testé tous les servomoteurs afin de régler les vitesses dans le but de faire un angle de 90° suite à un appui sur un bouton.
    Cependant, la friction ne nous permettait pas de réaliser des angles de 90° à chaque fois donc nous avons utilisé des servomoteurs à contrôle angulaire qui ne peuvent tourner que de 270° mais qui permettent quand même d’avoir toutes les configurations pour résoudre le Rubik’s cube. Cependant, nous avons rencontré un problème avec les entretoises qui tiennent le Rubik’s cube. Elles se dévissent lorsque l’on les tourne dans un certain sens, il a donc fallu coller les entretoises au moteur.

    Nous avons donc commandé et monté les nouveaux servomoteurs à contrôle angulaire, nous nous sommes malheureusement rendu compte que ces servomoteurs ne tournent pas parfaitement à 270°, nous avons 2 à 3° de décalage ce qui nous empêche de parfaitement utiliser notre solveur de Rubik’s cube.
    De plus, nous avons dû changer de « type » de Rubik’s cube car nous avions commencé avec un cube « blanc ». En effet, quand nous faisions tourner les faces, le cube central tournait dans le vide donc nous n’arrivions pas à faire tourner la face. Nous avons donc opté pour le modèle « noir », qui lui est plus rigide mais qui peut être plus compliqué à faire tourner.

    Nous avons eu aussi un servomoteur qui était défectueux; dès que nous le branchions, il créait un court-circuit ce qui éteignait l’Arduino instantanément.
    Nous avons donc rencontré des difficultés de montages assez importantes. En effet, nous devions fixer le Rubik’s cube à tous les servomoteurs tout en nous assurant que les servomoteurs tiennent à la structure, ce qui n’était pas une mince affaire.

    Vidéo du solveur de Rubiks Cube en action:

    Conclusion :

    Le résultat final est conforme au cahier des charges car il permet à une personne de résoudre le Rubik’s cube par l’intermédiaire de servomoteurs. Cependant, il serait possible d’améliorer de nombreux points afin de rendre l’utilisation de notre système plus facile et plus rapide. Pour commencer, le système frotte donc nous perdons en rapidité. Il nous faudrait donc un moyen afin de rendre la rotation du Rubik’s cube plus fluide ou de mieux centrer nos servomoteurs. Nous pourrions aussi surement améliorer la visibilité en ayant un moyen de voir le Rubik’s cube sans l’intermédiaire d’un miroir, pourquoi pas une caméra qui nous permettrait de voir toutes les faces du Rubik’s cube en même temps grâce à un moniteur externe. Enfin, nous pourrions avoir un tableau de jeu plus agréable pour l’utilisateur, c’est-à-dire un tableau de jeu qui pourrait plus ressembler à ceux des bornes d’arcade avec des boutons plus gros donc plus faciles à manipuler.

    Projet Peip2 : Dépollution, un serious game basé sur Unity3D

    Logo du jeu - Dépollution

    Logo du jeu – Dépollution

      Bonjour chers lecteurs et lectrices,

    Nous sommes trois étudiants du second cycle préparatoire de Polytech Angers, Alexandre, Arthur et Veton. Durant notre quatrième semestre, nous devions travailler sur un projet de conception pour un total de 80h. Nous avions choisi celui qui portait sur la mise en sécurité d’un site industriel pour l’intérêt qu’il offrait à la fois sur les filières BEMS et SAGI par le biais des contrôles de sécurité sur un site industriel et sur l’utilisation d’un moteur graphique. Dépollution est un serious game basé sur Unity 3D.

    Photo de groupe De gauche à droite : Veton G., Arthur C. et Alexandre B.

    Photo de groupe
    De gauche à droite : Veton Gashi, Arthur Cochennec et Alexandre Bataille

  • Notre objectif

    Le but de ce projet est d’apprendre à reconnaître les différents polluants et dangers que nous pourrions trouver sur un site industriel désaffecté et de pouvoir évaluer leur dangerosité. Le joueur devra utiliser la solution adéquate pour décontaminer chaque composant sensible du site suivant les mesures qui lui seront annoncés.

    Le jeu se veut à la fois sérieux et ludique, principe du serious game en anglais. Vous jouerez le rôle de l’ancien directeur dont son but consiste à nettoyer toute la zone dans un temps imparti.

    Avec cette article nous voulons vous présenter comment nous en sommes arrivé là. D’une part, nous avons découpé le travail en trois parties: la conception du terrain, le codage et la collecte de données. Pour le dernier, nous n’en parlerons que brièvement. Il ne s’agit que de recherches approfondies sur les différents produits et matériaux toxiques que l’on peut retrouver dans une centrale.

  • Le level design

    Petite aparté, le level design consiste en la création des niveaux et l’environnement présent(s) dans un jeux vidéos ainsi que ses éléments décoratifs.

    Dans notre cas, nous avons décidé de démarrer sur une île pour sa simplicité aux niveaux des bordures (la carte étant entourée d’eau) et qui est plutôt grande afin de créer différentes zones.

    Capture d'écran de notre usine sur Unity 3D

    Capture d’écran de notre usine sur Unity 3D


    L’usine présente un complexe industriel similaire aux centrales à charbon déjà existantes. Nous avons choisi une usine à charbon plutôt qu’une centrale nucléaire par exemple, parce que celle-ci présente davantage d’éléments polluants de risques différents et plus ou moins dangereux pour l’homme et l’environnement.

    Capture d'écran de la carrière sur ledit logiciel

    Capture d’écran de la carrière sur ledit logiciel


    Nous souhaitions rajouter une carrière afin d’ajouter un autre univers lié à l’exploitation des ressources naturelles, ici celle du charbon.

    Capture d'écran du lac (Unity 3D)

    Capture d’écran du lac (Unity 3D)


    Enfin, nous avons créé un lac pour le refroidissement de la centrale, lui-même lié à la carrière via l’écoulement des eaux.

  • Le game design

    Le game design quant à lui décrit tout ce qui se rapporte aux règles du jeu, à l’élaboration des mécaniques de gameplay, à la physique des éléments et bien plus.

    Celui-ci se résume au codage que nous avons fait avec le langage C#. Le codage est sans aucun doute la partie la plus fastidieuse et la plus complexe du projet.

    D’une part, nous avions choisi de commencer par l’élaboration d’un cycle jour/nuit ainsi qu’un chronomètre. Très vite, nous avons remplacé le second par une barre de vie qui diminue au fil du temps et qui décélère plus le joueur arrive à dépolluer correctement. Nous avons ensuite ajouté une fenêtre de fin pour indiquer que le joueur a réussi sa mission et a contrario, un game over. Puis nous avons fini sur les éléments toxiques, avec des interactions pouvant ajouter une couleur en fonction du bon ou du mauvais choix qui a été émis.

    Voici une petite présentation du jeu en vidéo :

  • Les problèmes rencontrés

    Nous avions rencontré quelques problèmes au cours de nos sessions de projet. Avant toute chose, nous devions nous approprier le logiciel Unity3D à l’aide du cours de M. Richard et le projet initial mis à disposition par M. Capelle, nos deux professeurs référents. Malheureusement, nous n’avons pas reçu la partie xml du fichier sur laquelle nous devions nous reposer afin de générer un texte automatique.
    À cela s’ajoute la corruption de données dû aux mises à jour. Il était donc important de vérifier que nous avions la bonne version de Unity, celle avec laquelle nous avions commencé la première fois. D’autre part, le jeu est assez volumineux et pas bien optimisé ce qui rajoute de la latence lorsque nous voulons ajouter de la flore sur la carte, comme des arbres par exemple ou bien de l’eau en mouvement. Ainsi, nous avons dû nous dispenser de ces idées pour la conception du terrain.

  • Ce que nous retenons de ce projet

    Le projet était en somme très attrayant, nous avons pu découvrir les différentes étapes lors de la conception d’un jeu vidéo, mais aussi comprendre le fonctionnement d’un moteur graphique. Également, ce projet nous a permis d’approfondir nos connaissances au niveau de la programmation avec des exemples concrets comme la création d’un game over.

    La partie sur l’élaboration du terrain demandait assez de minutie et de patience mais le rendu final était au delà de ce que nous nous imaginions. L’environnement est soigné, détaillé et les textures sont de plutôt bonne qualité.

    D’un point de vue global, ce projet nous a permis de progresser sur notre manière d’appréhender un travail de groupe, sur la diffusion des connaissances et sur notre organisation.

    Projet ACV

    Bonjour, nous sommes trois étudiants de 2ème année à Polytech Angers et nous avions comme projet de simuler et d’étudier l’impact environnemental de 3 matériaux différents utilisés comme isolants dans un pavillon.

    Objectifs du projet:

    – Définir l’épaisseur et donc le volume de chaque isolant grâce un logiciel de conception en bâtiment.
    – Calculer l’impact environnemental de chaque isolant grâce à un logiciel d’ACV.
    – Imprimer en 3D une maquette de notre pavillon.

    Les différentes étapes du projet:

    Etude de la maquette numérique

    Nous avons dans un premier temps calculé le volume de chaque matériau utilisé dans le pavillon. Nous avions à notre disposition le modèle numérique d’un pavillon classique de 104m², ainsi que les valeurs des résistances thermiques requises pour la norme BEPOS 2020, pour les murs, les sols et les combles.

    Capture maquette

    Cette norme entrera en vigueur dès l’année 2020 et elle impose une meilleure isolation thermique pour les bâtiments neufs par rapport à la norme précédente (RT 2012). De ces specification nous avons pu calculer l’épaisseur nécessaire pour chaque isolant.

    Nous avons travaillé sur le logiciel REVIT (un logiciel de conception en bâtiment) qui nous a permis d’obtenir le volume, et donc la masse de chaque matériau ce qui nous servira à estimer leur impact environnemental.


    Calcul de l’impact environnemental

    L’objectif est maintenant d’estimer l’impact environnemental de chaque matériau. Pour ce faire nous avons utilisé un logiciel d’Eco-Audit, dans lequel il faut renseigner les masses de chaque matériau, leur procédé de fabrication, les distances qu’ils ont parcourus et avec quel moyen de transport ainsi que l’énergie utilisée durant la phase d’utilisation du produit. Dans notre cas on assimilera l’utilisation du produit à la consommation électrique annuelle du pavillon. Finalement le logiciel nous donne l’énergie utilisée ainsi que le CO2 rejeté.

    ECO AUDIT


    Critique des résultats obtenus

    Grâce à ces résultats, nous avons remarqué que la laine de verre était le meilleur isolant pour l’environnement. Cependant ce constat est dû à la proximité du fabricant de cet isolant qui est 3 fois plus proches de notre terrain de construction que celui de la ouate de cellulose (nous avions situé notre terrain à Angers). Nous avons alors décidé d’affiner nos recherches pour voir lequel de ces matériaux à la meilleure durée de vie. Le ouate de cellulose a une durée de 50 ans environ tandis que celle de la laine de verre est de 15 ans à 20 ans. Nous en sommes donc arrivé à la conclusion que le ouate de cellulose serait le meilleur isolant pour l’environnement à long terme.

    Même si nous nous en doutions, par sa composition et sa fabrication polluante, le polystyrène est loin d’être l’isolant qui respecte le plus l’environnement. Si il est encore utilisé c’est parce qu’il est bon marché et facile à poser.


    Impression de la maquette 3D

    Pour finir nous avions comme objectif d’imprimer une maquette physique de notre pavillon. Nous l’avons d’abord simplifiée afin qu’elle soit imprimable et pour ce faire nous avons enlevé les cloisons intérieures, les meubles, les fenêtres et les portes. Pour finir nous avons séparé la maquette en deux partie, d’un côté le toit et de l’autre les murs, l’imprimante ne pouvant pas tout imprimer d’un coup car elle ne peut pas imprimer dans le vide.

    Maquette 3D des murs

    Maquette 3D des murs

    Malheureusement l’imprimante était très utilisée en fin d’année par les autres groupes et nous avons fini par abandonner l’idée d’imprimer notre maquette, sachant que la partie la plus importante du projet avait été faite, c’est-à-dire l’étude environnementale.

    Conclusion:

    Nous avons pris beaucoup de plaisir à travailler sur ce projet. Cela a été l’occasion pour nous de découvrir certaines notions en rapport avec la spécialité Bâtiment Exploitation Maintenance et Sécurité de l’école. De plus, le fait de travailler sur la réduction de l’impact environnemental des bâtiments nous tenait à coeur. En effet c’est une problématique d’actualité et pour laquelle nous nous sentons réellement concernés. Nous tenions à remercier tout particulièrement notre professeur encadrant M.RIAHI qui nous a proposé ce projet et qui nous a aidé durant toutes les étapes de sa réalisation.

    Modélisation 3D et Analyse de Structure

    Bonjour,

    Nous sommes Line Bouwens et Simon Coiffard, deux étudiants du cycle préparatoire à Polytech Angers. Lors de notre quatrième semestre, nous avons un projet de conception à réaliser. Nous souhaitons tous les deux intégrer la filière « Bâtiment : Exploitation, Maintenance et Sécurité » l’année prochaine. Il nous paraissait donc évident de choisir un projet dans le sens de notre objectif professionnel.

    Notre projet va donc consister en une étude de plusieurs problématiques de dimensionnement. Nous allons vérifier la résistance d’éléments de la structure d’un bâtiment vis-à-vis des charges de services qu’il est susceptible de subir durant sa durée de vie, via 2 logiciels, Revit et Robot. Ce sont des logiciels Autodesk déjà installés sur les ordinateurs de l’école. Enfin, dans la mesure du possible, un prototype du bâtiment, à échelle réduite, sera obtenu par impression 3D en utilisant la maquette numérique.

    Les premières heures ont été occupées par des didacticiels de prise en main des logiciels. Revit est un logiciel de design de bâtiment. Il nous permet de créer l’architecture désirée. Nous pouvons également appliquer les charges que l’on souhaite étudier. Le logiciel Robot calcule ensuite les effets de ces forces sur la structure et nous affiche les diagrammes sur le bâtiment comme sur la figure ci dessous.

    moments induits par les forces

    Ainsi, nous pouvons voir les parties soumises aux efforts les plus importants. Nous voyons ici que les forces impliquent une flexion du toit de l’abri. Si la flexion dépasse un certain degré de sécurité, nous devons y remédier en ajoutant des renforts, tels que des poteaux, pour soulager la structure. Ces modifications éventuelles de structure seront faites sur Revit puis prises en compte par Robot.

    La première partie a été sur des structures simples. Pour la suite du projet, c’est notre professeur encadrant qui nous a donné le fichier du bâtiment final. Une vue d’ensemble est présentée sur la capture d’écran ci-dessous. Il est déjà dimensionné, notre travaille consiste donc à vérifier certains éléments de structure. Suite à la chute d’un balcon dans la ville d’Angers il y a 3 ans et le nombre d’accidents récurrents ayant pour cause des défauts de dimensionnement de la structure, nous avons décidé de s’intéresser à cette partie là en particulier.

    vue du batiment

    Nous avons vérifié, pour des formes de section des poteaux rondes et carrées ainsi que pour plusieurs liaisons au balcon, la résistance des poteaux au flambement, ou flambage, c’est à dire sa tendance à se déformer dans le sens perpendiculaire à la compression qu’il subit. Lors de tous nos calculs, nous obtenons une résistance très suffisante. Nous avons calculé le diamètre minimal des poteaux, qui est largement inférieur à celui alors sur le modèle Revit.

    Le projet nous a ensuite amené à calculer la flèche du balcon, c’est à dire les efforts tranchants et moments interieurs du balcon, selon la position de la section étudiée par rapport au mur du bâtiment soutenant le balcon.

    étude des forces et des moments

    étude des forces et des moments

    Pour finir, nous avons décidé d’ajouter sur le modèle Revit, du ferraillage dans le balcon et la dalle du premier étage. Nous avons donc fait les calculs. Cela consiste à déterminer leur taille mais aussi la densité, c’est à dire la répartition des armatures en métal.

    Après avoir étudié ce bâtiment et sa structure, nous pouvons conclure qu’il est possible de le construire en toute sécurité.
    Même si nous n’avons pas pu finaliser ce projet en imprimant la structure en 3D, cela nous a permis de découvrir de nouveaux logiciels qui nous seront utiles dans la suite de nos études ainsi que dans notre vie professionnelle. On a également pu étendre nos connaissances sur le domaine du bâtiment et comprendre pourquoi, malheureusement, des accidents peuvent arriver malgré les coefficients de sécurité pris en compte par les bureaux d’études.

    Si le projet était à refaire, je demanderai au professeur de nous donner un bâtiment mal dimensionné afin de réfléchir par nous même aux différentes solutions que l’on pourrait apporter. Cela serait plus captivant et permettrait de mettre en avant notre créativité.

    Nous remercions donc Hassen Riahi, professeur encadrant qui nous a proposé ce sujet, puis guidé et qui a répondu à nos questions.
    Merci également à l’ensemble de l’équipe enseignante qui à rendu ces projets possibles.

    Et finalement, merci à vous de nous avoir permis de partager nos découvertes et apprentissages avec vous;

    Line Bouwens et Simon Coiffard, étudiants en EI2 (2018-2019)

    Le Vélo-Bus

    Bonjour à tous et bienvenue sur l’article du Vélo-Bus!

    IMG_1883
    Nous sommes un groupe de 4 étudiants en 2ème année de cycle préparatoire. Pour notre projet de semestre composé de 80 heures nous avons choisi de continuer le projet du vélo-bus qui avait déjà débuté l’année dernière sous l’encadrement et l’aide de Laurent Saintis. Le groupe précédent avait réalisé une première partie de la conception du véhicule que nous avons repris et modifié. Le projet du vélo bus est un projet de grande ampleur qui nécessite plus de 80h pour être fini: c’est pourquoi nous nous sommes concentrés sur la partie châssis du véhicule.

    Qu’est ce qu’un vélo-bus ?

    Le vélo-bus est un concept innovant. Il s’agit d’un véhicule de la taille d’un minibus qui avance grâce au pédalage de six personnes (maximum). La direction est assurée par un conducteur à l’avant du vélo-bus.

    City_cycle_beach_160611
    (exemple de prototype d’un vélo-bus)

    Quel est le but du vélo-bus ?

    Son but est de permettre aux étudiants de Polytech Angers de se déplacer sur le campus de belle beille par groupe de 7. Il s’agit d’un réel besoin car la pause du midi est de 1h10, cela ne laisse pas beaucoup de temps pour se rendre au restaurant universitaire et manger : il faut compter dix bonnes minutes à pied. Il est de même lorsqu’il faut se rendre à l’IUT pour les travaux pratiques de certaines matières.

    Etapes du projet

    Notre Projet plutôt orienté sur une phase de réalisation et de fabrication, s’est déroulé en 3 étapes principales.

    1.Conception

    Avant de pouvoir débuter la fabrication, il était nécessaire de passer par une phase de conception. Cette phase s’est décomposée en 2 sous parties. La première d’entre elle consistait à récupérer et à nous approprier les éléments proposés par l’ancien groupe. Nous nous sommes rapidement rendu compte que de nombreux éléments n’avaient pas été judicieusement choisi et c’est pourquoi nous avons dû refaire une seconde modélisation du véhicule. Cette modélisation a le mérite d’être réalisable et modulable avec des éléments de récupération. Elle permet également d’être plus envisageable pour une réelle construction.

    chassis_complet
    (Modèle 3D du châssis sur SolidWorks)

    2.Prise de mesure et tests

    Bien que nous avions peu d’éléments sur lesquels nous baser pour réaliser des tests et prendre des mesures, cette étape était nécessaire pour nous permettre le dimensionnement du véhicule. Nous avons donc réalisé plusieurs tests sur les éléments à notre disposition pour nous permettre d’avoir une conception 3D fiable et réaliste.

    IMG_1062
    (Prise de mesure de l’écartement des différents vélo)

    3.Réalisation

    Cette partie fût la plus gratifiante pour l’ensemble des membres de notre projet. En effet, cette dernière nous a permis de fabriquer et de manipuler les différents éléments préalablement conçus.
    Nous avons utilisé d’anciens vélos sur notre véhicule où nous avons décidé de scier l’arrière du cadre pour obtenir une forme plus esthétique et plus compacte.

    IMG_20190403_163640 (2)(test de sciage de l’arrière d’un cadre de vélo)

    Nous avons également dû extraire toutes les pièces inutiles sur nos vélos. En effet nous avons seulement utilisé les cadres, les pédales et le pédalier; c’est pourquoi la fourche, les roues, le guidon etc… ont du être désassemblés.

    (Timelapse désassemblage vélos)

    Pour la réalisation du bâti nous avons décidé de le construire avec des profilés en aluminium. En effet il s’agit d’un matériau léger, solide et accessible financièrement. De plus, nous avons réussi à trouver un fournisseur qui permettait d’obtenir ces profilés déjà coupés et dimensionnés. Nous avons donc reçu notre commande et l’avons assemblée.

    (Timelapse assemblage châssis)

    Conclusion
    IMG_1839 (2)

    Après 4 mois de travail sur le projet du vélo bus, nous sommes fiers du travail accompli. Nous sommes partis du cahier des charges étudié l’année dernière par un autre groupe pour aujourd’hui proposer un prototype de châssis et de nombreux autres éléments du vélo-bus. Grâce à ce projet, nous avons pu mettre en pratique de nombreux éléments théoriques appris durant nos 2 ans d’étude.
    Ce type de projet nous a permis de nous rendre compte de la difficulté de ce type de projet mais également de nous confronter au monde du travail auquel l’ingénieur doit faire face.

    Création de l’enceinte BDE

    Par Descantes Mathis (mannequin en exposition ci dessus), Ruiz-Gapihan Elouan (photographe), et Pajot Virgil (directeur des services logistiques)

    Nous sommes 3 étudiants de Polytech Angers, en 2e année de cycle préparatoire, et nous vous présentons donc ici le projet que nous avons choisi dans le cadre de cette année. Il s’agit de la réalisation d’une enceinte Bluetooth. À l’origine essentiellement orienté sur le Bluetooth, avec prise en main du kit et du Shield Arduino, nous sommes rentrés en contact avec le professeur référent afin de rediriger le cahier des charges vers une mise a disposition de l’enceinte pour le Bureau Des Étudiants. Il s’agissait d’intégrer de nouveaux aspects à notre travail : plus de conception notamment celle du caisson, de ses attributs ; l’étude acoustique au niveau spatial, et de la concordance des éléments audio, etc. En effet nous voulions un projet diversifié pour toucher à tout, continuer à voir un panel de sciences et techniques le plus large possible.

    amplificateur SONY fourni par l’école

    • Le professeur référent disposait donc d’une vieille enceinte et d’un amplificateur afin de tester notre Bluetooth, le changement d’objectif du projet incluait donc le recyclage et la ré-utilisation de l’amplificateur. Celui-ci indiquait une puissance de 6 x 100W. Il s’agit en fait d’un home-cinéma disposant de nombreuses entrées (pour les VHR, CD, télévision…) et donc d’un large système électronique permettant de traiter différents signaux chacun à leur façon. Pas étonnant donc, qu’il pèse 8kg et soit aussi volumineux. Cependant sa puissance nominale réelle en sortie de son est d’environ 200W (c’est à dire valeur maximum délivrée, selon la musique). Nous avons tout de même mis quelque temps avant d’être sûr de cette valeur, tant nous étions perdus paris la multitude de spécifications et informations techniques nouvelles à nos yeux :
      Capture d’écran ampli N314T8
    • C’est en effet un des premiers problèmes rencontrés : comprendre tout ce nouveau domaine qu’est l’acoustique électronique. De plus nous menons cette documentation en parallèle de recherches sur le côté spatial du son et son optimisation ce afin de concevoir le caisson le plus performant possible (nous cherchons également le meilleur bois à utiliser). Il nous faut aussi bien sûr apprendre sur le Bluetooth, d’autant plus que nous devons choisir une carte pour assurer la connexion et que nous en savons trop peu sur la programmation liée à chaque carte.
    • Ainsi les 5 premiers jours sont consacrés à l’apprentissage et à la documentation. Il s’agit d’appeler des professionnels, d’éplucher des sites web proposant des cours et regarder des tutoriels ou vidéo. Heureusement nous commençons environ en même temps le cours “électronique et filtrage actif” avec M.Pecqueur, que nous avons pu aller trouver pour demander plus amples explications. En effet de sa matière découlaient ensuite pratiquement tous les calculs d’impédance, de tension et de courant, et donc principalement de fréquences. Ainsi la courbe ci-dessus prend tout son sens : la réponse en fréquence d’un haut-parleur illustre la qualité et le volume que ce dernier va restituer si on le sollicite avec un signal d’une certaine fréquence. Cela va de pair avec le fonctionnement d’un haut-parleur, que nous n’aurions pas tous été capable d’expliquer avant ces séances d’apprentissages :
      shéma + vulgarisation du fonctionnement d'une enceinte

      schéma + vulgarisation du fonctionnement d’une enceinte

      Nous savons depuis les cours d’électromagnétisme en première année qu’un courant circulant dans une bobine génère un champ magnétique. On va faire de cette bobine un générateur de pulsations mécaniques grâce à l’aimant qui réagira au champ magnétique créé. Ainsi ces pulsations (en translation de droite à gauche sur le schéma) vont entraîner la membrane qui en déplaçant des volumes d’air et en vibrant à certaines fréquences permet la propagation du son.Et donc la fréquence de résonance d’un système désigne celle à laquelle tout le système est soumis à des vibrations, qui peuvent endommager voire détruire le système. En effet dans notre cas nous voulons que seule la membrane vibre. Cette fréquence, propre à chaque système, est donc à éviter à tout prix. C’est là que les filtres interviennent.

      Nous avons vu plus haut que chaque composant son répond de manière différente aux fréquences traités. Comme vous le savez on peut distinguer 3 types de composants son correspondants à 3 plages de sonorité : les tweeters traitent les sons les plus aigus, ce qui correspond aux hautes fréquences de l’humainement audible ; les médiums, sans surprise traitent les tonalités donc fréquence moyennes, et les basse ou woofer sont destinés à retranscrire les sons graves, générés par les basses fréquences. Les constructeurs font donc évidemment en sorte que la fréquence de résonance d’un composant ne se trouve pas dans sa plage d’utilisation optimale; il suffit alors de traiter le signal de manière à n’envoyer que les fréquences adaptées à chaque composant, au moyen de filtres. Il est dommage que nous ayons appris comment calculer nos filtres pour obtenir les traitements du signal souhaités qu’après les avoir déjà commandés. Nous avons néanmoins eu la chance de pouvoir les assembler nous-même :

      filtre passe haut pour les aigus/médiums à gauche, passe-bas pour les graves à droite

      filtre passe haut pour les aigus/médiums à gauche, passe-bas pour les graves à droite

       

    • Nous n’avons utilisé que 2 filtres, car l’enceinte que nous avons finalement construite est une 2 voies. (tweeter pour les hautes fréquences, woofer pour les basses). De plus ces 2 speakers sont montés co-axialement, c’est à dire qu’à l’arrière du haut parleur de basses, le twitter est vissé , et qu’il propage le son au travers du cache poussière au centre de la membrane (du haut-parleur, cf schéma plus haut).

      Ces 2 haut-parleurs ont donc été choisis en correspondance avec notre ampli dans une formule kit (caisson (à choisir) + speakers (à choisir) + filtres adaptés) proposée par

      Ces 2 hauts-parleurs ont donc été choisis en correspondance avec notre ampli dans une formule kit (caisson (à choisir) + speakers (à choisir) + filtres adaptés)

    • Nous avons donc reçu les 6 faces de notre caisson proprement découpées. Notre tuteur nous avez conseillé de prendre un kit tout fait car nous ne disposions pas du temps et des moyens nécessaires. Avec le recul nous pensons que nous aurions eu le temps de fabriquer notre propre caisson, tant nous avons attendu avant de recevoir le kit. Certes le trou circulaire pour accueillir le haut parleur aurait-été délicat à réaliser, mais en s’appliquant à la scie sauteuse on aurait pu le faire. Maintenant le résultat aurait-il été le même ?

      Effectivement, l’étanchéité du caisson est primordiale à la qualité du son restituée. Le volume d’air dans le caisson sert de résonance et doit vibrer à l’intérieur pour produire un beau son même à haut volume. Si la vibration est transmise à la structure (par du jeu entre 2 faces par exemple) les pièces vont faire du bruit, se cogner entre elles, potentiellement s’abimer et surtout laisser s’échapper toutes les ondes sonores dont on aurait voulu la résonance interne. Les seuls endroits ouverts du caisson : les évents. Il s’agit de tout de même permettre à l’air de circuler, et d’avoir un meilleur rendu des basses lorsque la vibration sort. Les nôtres sont dits laminaires : 4 conduits (en bois) dans les coins du caisson permettent aux volumes d’air situé à l’arrière de ce dernier de sortir par la face avant. Globalement la partie spatiale du son est trop technique pour nous, il nous aurait fallu y passer bien plus de temps pour en comprendre tous les aspects et être en mesure de dimensionner nous mêmes nos évents. Et même si on avait pu fabriquer notre propre caisson (le principal étant d’avoir un volume suffisant pour ne pas “étouffer” les vibrations) il aurait surement été compliqué de le fabriquer sans aucun jeu et parfaitement hermétique. Le kit délivré nous assure donc une certaine qualité sonore.
      Nous l’avons choisi, les dimensions de la faces supérieures un peu plus large que notre ampli afin de pouvoir l’y fixer.

    • L’idée étant avant tout d’avoir une enceinte mobile, il fallait évidemment que l’ampli soit solidaire du caisson. Nous avons imprimé des coins permettant d’accueillir une tige filetée grâce à un emplacement pour un boulon sur la face du dessous. Ils maintiennent l’ampli immobile dans le plan de la face supérieure du caisson, et au sommet des tiges filetées, sont fixées des barres en métal se croisant par dessus l’ampli, et l’empêchant de se soulever.
      64623177_2311097689139275_8360704860198273024_n
    • Pour ce qui est du Bluetooth, nous avons dû commencer à se documenter dès le début, en parallèle de nos recherches de composants. C’était cependant une tâche moins prioritaire car nécessitant moins de réalisation. Il fallait tout de même savoir quelle carte nous allions utiliser. Après quelques recherches et quelques essais, nous avons compris qu’il n’existerait pas d’entre deux au niveau de la programmation. En effet nous ne voulions pas nous en surcharger mais les cartes essayées ne nécessitaient aucun codage, elles étaient déjà prêtes à l’emploi (après résolution des problèmes arduino ou de Bluetooth). Nous avons donc fini par acheter un petit module à 5€ à connecter en Bluetooth et à brancher en jack à l’amplificateur.
    • Notre seul regret : les roulettes. En effet lors des dernières séances où nous avons dû finir toute la réalisation, nous avons remis en question l’utilité des roulettes, étant donné que si nous en achetions ce serait dans la précipitation sans certitude de trouver celles que nous voulions. Nous avons alors ajouté dans la balance le fait que cette enceinte, alimentée en secteur, n’aurait pas à être trop déplacé, au pire 20m en la sortant d’une voiture. Nous avons regretté dès la première utilisation, lorsqu’il a fallu la porter sur près d’1km. On se dit donc qu’il faudra penser à fabriquer un système pour la déplacer en plus des finitions de peinture l’année prochaine.
    • Nous avons également quelques idées de futurs projets d’amélioration de l’enceinte pour les prochaines années : M.Lagrange a soulevé la question d’une batterie pour alimenter l’enceinte, un groupe pourrait effectivement se pencher sur l’alimentation de l’amplificateur. Même s’il est branché sur du 220V je doute qu’il ait besoin d’autant. S’il est effectivement muni d’un transformateur ou d’un circuit d’alimentation réduisant le courant entrant, on pourrait court-circuiter cette partie-là et alimenter directement l’ampli avec une batterie adaptée à ses besoins. Cette batterie pourrait même être un panneau solaire sur l’année d’après. On pourrait également considérer un projet plus large qui s’occuperait de faire de l’enceinte sa version 2.0, en s’occupant de la mobilité, de la customisation etc.Pour conclure nous sommes très satisfaits du rendu final de notre enceinte, et d’avoir pu toucher à autant d’aspects techniques différents. Nous aurions certes préféré concevoir et construire entièrement le caisson nous-même, peut-être en proposant notre propre projet pour se concentrer sur ce qui nous importait vraiment. Cependant les réorientations du référent nous permis d’avoir le temps de finir notre projet. Nous avons également dorénavant plus d’expérience sur un projet de longue haleine, en groupe qui plus est. Nous serons à l’avenir plus efficace pour l’organisation et la répartition des tâches dans le temps, ce dès le début d’un tel projet. C’était une bonne expérience dont le résultat servira, on l’espère, longtemps le BDE.

    Muscle artificiel via origami

    Lien

      Bonjour à tous !

    Nous sommes trois étudiants de Peip2, dans le cadre de nos études nous avons choisi de travailler sur les muscles via la technique de l’origami dans le but de trouver de nouvelles formes de liaisons mécaniques. Durant ce projet, nous avons été accompagné par M. Verron.

    Les muscles artificiels via origami sont des objets techniques imaginés par un travail collaboratif entre l’université d’Harvard et du MIT. Créés dans l’objectif de trouver une alternative aux moteurs électriques couramment utilisés, ces muscles pourraient être une solution en terme de rendement et de masse de système.

    La première étape de ce projet était de s’approprier les travaux déjà entamés du MIT afin de comprendre les principes de base de la mécanique des fluides et de la mécanique du solide. Le but étant de s’approprier les mouvements créés par les différentes formes origamiques.

    Pendant ce projet, nous avons décidé de travailler sur plusieurs formes d’origami afin de créer différents mouvements pour nos prototypes. En expérimentant tout d’abord avec des matériaux de récupération, nous nous sommes ensuite aidé du logiciel solidworks pour la modélisation des embouts et des structures internes au muscle.

    Embout Grappin triangle et trapèze pour la structure.

    Embout Grappin triangle et trapèze pour la structure.

    Les prototypes que nous avons expérimentés sont construits de la manière suivante :

    Conclusion :
    Nous avons été très satisfait de ce projet tout au long de son déroulement. Il a représenté pour nous un défi technique intéressant car nous voulions créer des muscles intéressants technologiquement mais aussi visuellement. Le coté démonstratif était important car nous pensons qu’il serait intéressant de présenter de tels objets lors des portes ouvertes de l’école pour représenter l’option QIF.

    Trieuse de M&M’s

    Trieuse Finale

    Cliquer pour une meilleure qualité

    Bonjour à tous !

    Dans l’industrie il est fréquent de devoir trier des produits selon un ou plusieurs critères (forme,couleur, poids…). À l’image de ces problématiques, on propose ici de concevoir et de réaliser une trieuse de M&M’s selon leurs couleurs.

    Notre équipe de 4 étudiants en EI2 est composée de Victor et Clément qui se sont chargés de la conception et la réalisation mécanique du système (réalisation des pièces sous SolidWorks , impression 3D des différents éléments, usinage avec la Charly Robot…) et 2 étudiants (Alexis et Maël) se sont chargés de la partie électronique et programmation (branchements à L’Arduino, commande des deux servomoteurs, récupération des données du capteur de couleur et infrarouge,…). Les deux sous-groupes ont travaillé en parallèle pour finalement fusionner leur travail afin de réaliser la trieuse de M&M’s.
    Nous avons été accompagnés pour ce projet par deux professeurs : Mr Rémy Guyonneau et Mr Franck Mercier.

    Présentation du projet :

    Les différentes pièces composant notre trieuse sont :

    L’Entonnoir : Présent tout en haut de la trieuse, c’est là où on intègre les M&M’s.

    Entonoir

    -Le « Porte-FeedWheel » : Pièce centrale de la trieuse, elle est composée d’un petit entonnoir sur le dessus, d’où sortent les M&M’s provenant de l’entonnoir principal, d’espaces vides pour le côté esthétique afin d’apercevoir les M&M’s qui tombent, ainsi qu’un espace en bas pour intégrer les capteurs et la pièce « FeedWheel »

    porte feedwheel

    -Le « FeedWheel » : Pièce ronde comprenant 4 cavités dans lesquelles un seul M&M’s peut rentrer. Un moteur à rotation continu est fixé à l’arrière du FeedWheel.

    feed wheel

    Un capteur infrarouge : Fixé dans le « Porte-FeedWheel », il permet de détecter les erreurs d’approximations du moteur à rotation continu afin d’ajuster un angle correct.

    Capteur IR

    Un capteur de couleur : Fixé également dans le « Porte-FeedWheel », il permet de détecter la couleur du M&M’s correspondant.

    capteurcouleur

    -Le « Tuyau principal » : Directement relié au « Porte-FeedWheel », d’où sortent les M&M’s, collé à un servomoteur. Un angle spécial est appliqué à une couleur précédemment détectée.

    tuyau

    -Le « Séparateur » : Pièce servant de lien entre le tuyau principal et les tuyaux secondaires. La forme du dessus est prévue pour la circulation du tuyau principal. Il comprend 6 trous, chaque trou correspond à une couleur.

    Separateur

    -Les « Tuyaux secondaires » : Ils sont au nombre de 6 et servent de liaison entre le séparateur et les bocaux.

    tentacule

    Les bocaux : Ils sont également au nombre de 6 et sont les pièces de présentation des M&M’s finalement triés.
    Ils sont reliés aux tuyaux secondaires correspondants et possèdent chacun une vitre transparente découpée avec le « Charly Robot ».

    Bocal

    Au final nous avons assemblé toutes ces pièces et cela nous a donné une belle trieuse !

    Rendu final

    Les différentes étapes de notre projet :

    Premièrement, nous avons établi en commun au brouillon une structure qui nous paraissait correct pour la partie mécanique et pour la partie programmation, tout en s’inspirant de même type de trieuses déjà existantes.

    Une fois la structure plus ou moins établi au brouillon, nous séparons nos travaux en 2 groupes :

    Après l’assemblage de ces pièces toujours sur SolidWorks, ce groupe passa aux impressions en 3D avec les imprimantes Raise3D et Makerbot.
    En parallèle, pour les bocaux en bas de la structure, ce groupe réalisa un usinage grâce à la Charly Robot avec du plexiglas afin de créer une vitre transparente permettant de voir les M&M’s.

    L’autre groupe se chargeait de la programmation de l’ensemble des composants électronique, à savoir : deux capteurs (RGB et Infrarouge) et deux moteurs (à rotation continu et servomoteur).

    Ainsi nous avons commencé la programmation de chaque composant indépendamment pour prendre en main la programmation Arduino plus facilement.
    Une fois chaque programme fini, nous les avons rassemblés en un et organisé la structure de notre programme final. De nouveaux composants se sont ensuite ajoutés comme l’écran LCD, le bouton ou l’utilisation d’un capteur IR pour positionner le moteur à rotation continue.

    Problèmes rencontrés

    Nous avons eu pas mal de problèmes au cours de notre projet.

    Dès le départ nous ne savions pas par où commencer, comment se partager les tâches etc. Par la suite, nous avons commencé à imaginer le projet, il était difficile de mettre en commun nos idées. Lorsque nous sommes passés sous Solidworks, de nombreux bugs nous ont posé problème.

    De plus, des pièces que nous avions modélisées puis imprimées se sont avérées ne pas être aux bonnes dimensions ou bien avec trop peu de jeu pour assembler les pièces. La couleur jaune de la pièce « FeedWheel » fut embêtante pour l’étalonnage des couleurs de bonbon. Cela a été résolu en aspergeant cette pièce avec une bombe de peinture noire.

    Le problème majeur était surtout les pannes d’imprimante 3D qui nous ont beaucoup ralenties.
    En programmation, il y a également eu quelques soucis. Par exemple, pour trouver la documentation de certains composants comme pour le capteur couleur ou l’écran LCD, la documentation était fausse.

    Nous avons aussi rencontré des problèmes avec le câblage qui devenait illisible et problématique. Il était donc nécessaire de remettre des fichiers dans la racine du logiciel Arduino. Il a aussi été difficile d’étalonner chacune des couleurs des M&M’s.

    Conclusion

    Pour conclure, nous voulons absolument remercier nos tuteurs Mr Mercier et Mr Guyonneau pour toute l’aide apportée au cours de ce projet.

    Pour nous, ce projet fut une grande expérience dans tout ce qui est du travail en groupe, de l’innovation, de la pratique…
    Voir le projet grandir au fur et à mesure des séances nous a aussi motivé pour avancer et perfectionner le projet au maximum.

    Merci à vous, chers lecteurs de vous être intéressés à notre projet.

    Victor B, Clément C, Alexis G, Maël C