Kart autonome

Bonjour à toutes et à tous et bienvenue !

Nous sommes quatre étudiants de PEIP2 à Polytech Angers et nous avons décidé, dans le cadre de notre formation de réaliser un kart autonome. Passionnés de mécanique et de programmation, vous êtes au bon endroit!

Introduction:

Avant de vous parler de ce que nous avons fait, il est important de vous expliquer ce qui a été réalisé par nos prédécesseurs. En effet, nous avons repris le projet des élèves de l’année passée. Ces derniers avaient réalisé un travail monumental en fabriquant à l’aide de pièces de récupération un châssis et une direction. C’est donc avec cette solide base que nous avons commencé notre projet. Cependant au vu de la complexité de notre tâche, nous nous sommes divisés cette dernière en plusieurs sous-parties : le frein, la direction, l’automatisation, la motorisation, et enfin, la carrosserie.

Le frein:

Le frein, élément indispensable sur tous les véhicules, est l’une des premières choses sur laquelle nous nous sommes attelés. De fait, l’année passée, les étudiants avaient dû, par manque de temps, se contenter d’un frein à main seulement sur la roue arrière droite. Ainsi nous avons décidé de réaliser un tout nouveau système de freinage, cette fois-ci à la pédale.

Etape 1: Assemblage des roues arrières

A l’origine, la raison pour laquelle le véhicule ne freinait que de la roue arrière droite provenait du fait que les deux roues n’étaient pas reliées. Cependant, on ne pouvait pas simplement effectuer l’assemblage à l’aide d’une tige en métal que l’on soudrait. En effet, cela aurait empêché nos suspensions de réaliser leur fonction, ou cette tige se serait cassée en cas d’efforts trop importants. Ainsi nous avons envisagé une solution technique nécessitant deux cardans, un arbre cannelé et une douille lisse nervurée (respectivement ci-dessous).

Les deux cardans nous permettent de gérer la différence de hauteur entre les roues. L’arbre et la douille permettent quant à eux de transmettre la rotation tout en gérant la variation de l’écart entre les roues. Effectivement, étant donné que nous avons un triangle de suspension à l’arrière, plus il y a du poids dans le véhicule, plus les roues s’écartent.

Etape 2: Mise en place du système

Une fois ce problème de roues réglé, nous avons réfléchi à un système de freinage à la pédale. Pour réaliser celui-ci, nous nous sommes servis d’un câble de frein de vélo, de plaques métalliques, d’une pédale et d’un frein à disque provenant d’un motoculteur. De cette manière, nous avons attaché le câble au frein puis nous l’avons tendu et caché à l’aide d’une plaque métallique. Enfin, nous l’avons attaché à la pédale. Cette dernière est fixée sur une tige métallique traversant perpendiculairement le kart dans la largeur. Grâce à la tension importante du câble, la pédale se relève d’elle-même. Cependant la course de celle-ci est faible.

Direction :

En parallèle, nous nous sommes attaqués à l’automatisation de la direction. Nos prédécesseurs avaient pour projet de gérer la direction avec un capteur relié à une carte Arduino pour contrôler un moteur électrique.

Nous pensions que cela aurait été assez rapide. Finalement, après avoir raccordé le moteur au volant de notre Kart, nous nous sommes rendus compte que le couple du moteur électrique était trop faible. Ainsi, nous avons décidé de concevoir un réducteur pour réduire la vitesse et augmenter le couple. Ne disposant que d’imprimantes 3D et d’une découpeuse laser, nous avons dû concevoir ce réducteur en plastique, en bois et en plexiglass. Après un long travail de CAO, nous nous sommes attelés à la réalisation du réducteur.

Après l’avoir terminé, nous l’avons testé sur notre kart. Malheureusement, un problème important est survenu: le moteur arrivait à bien faire tourner les arbres du réducteur, et par conséquent le volant. Cependant, quand nous tournions le volant, cela cassait le dernier arbre du réducteur dû à une différence de couple entre le moteur et le réducteur. Ainsi, nous avons décidé de concevoir un différentiel que nous placerions entre le moteur électrique et le réducteur. De cette manière, le moteur électrique entraîne le différentiel qui lui-même entraîne le réducteur, mais à l’inverse quand le volant tourne, il entraine le réducteur et arrive au différentiel qui continue de tourner mais n’entraine pas le moteur.

Pour finir, nous devions faire un bâti reliant le moteur, le différentiel et le réducteur. Cependant, l’impression de ce dernier a rencontré un problème. Ainsi, nous avons dû nous résoudre à faire le bâti en bois ce qui nous a pris plus de temps et de place. Enfin, nous avons réussi à coder un programme pour faire tourner le moteur en fonction de la direction demandé.

Automatisation:

A l’origine, l’objectif était d’automatiser à la fois la direction et le freinage. Malheureusement, par manque de temps, nous nous sommes rapidement concentrés sur la direction. Pour ce faire, nous avons utilisé un capteur lidar (capteur laser) et plus particulièrement le YDLIDAR G2 (image ci-dessus) qui permet de détecter, à 360 degrés, des obstacles allant de 0,12 à 12 mètres. Ce capteur, réputé simple d’utilisation, peut fonctionner sous Arduino. Ainsi, une fois la carte d’acquisition correctement reliée à notre appareil, il ne nous restait plus qu’à écrire le programme.

Dans un premier temps, nous avons défini ce que concrètement nous devions faire. De cette manière, nous avons déterminé qu’il fallait que le véhicule tourne en cas d’obstacle sur sa route et que dépendamment de la position de celui-ci (à droite ou à gauche), le kart choisisse le côté le plus optimal. Aussi, en cas de présence de plusieurs obstacles, il évite l’entrave la plus proche.

Une fois ceci bien défini, nous avons retranscrit cela en langage Arduino. Ainsi, nous avons demandé au capteur de réaliser plusieurs tours (afin d’avoir une meilleure précision) à l’aide de la condition: if (old_angle>angle). En effet, celle-ci signifie que la mesure de l’angle précèdent est supérieur à celle de l’angle du point actuellement étudié. Ce qui implique que le capteur a fait un tour complet. Des calculs de trigonométrie nous ont permis de localiser les différents obstacles. De cette manière, nous sommes parvenus à récupérer et à analyser les données du capteur.

Pour les plus téméraires d’entre vous, voici le code:

void loop() {
  


    if (lidar.waitScanDot() == RESULT_OK) {   //(lidar.waitScanDot() == RESULT_OK)
      const scanPoint &p = lidar.getCurrentScanPoint(); //Recuperation du point

      float angle = float(p.angle);        //Renommer la variable
      float distance = float(p.distance);  //Renommer la variable
      
      
      if (angle < old_angle){   // si le capteur a fait un tour complet
        nb_tour +=1;            // incrementation du nb de tours 
        
          if (nb_tour==30){     // nb tours au bout duquel on prend une décision
            nb_tour =0;         // reinitialisation de la variable 
            if(obs_droite == 1){
                printf("Tourner gauche\n");
                digitalWrite(11,LOW);         // activation des sorties digitales pour tourner à gauche
                digitalWrite(10,HIGH);        // 
                digitalWrite(12,LOW);         //
                distance_obs = 6000;          // réinitialise la distance de l'obs en dehors de notre zone de détection
                 obs_gauche = 0;              //Reinitialisation des variables obs
                 obs_droite = 0;              //

            }else if(obs_gauche == 1){
                printf("Tourner droite\n");
                digitalWrite(10,LOW);         // activation des sorties digitales pour tourner à droite
                digitalWrite(11,HIGH);        //
                digitalWrite(12,LOW);         //
                distance_obs = 6000;          // réinitialise la distance de l'obs en dehors de notre zone de détection
                printf("\n");
                 obs_gauche = 0;              //Reinitialisation des variables obs
                 obs_droite = 0;              //
            }else {
                printf("Avancer\n");
                digitalWrite(10,LOW);         // activation des sorties digitales pour avancer
                digitalWrite(11,LOW);         //
                digitalWrite(12,HIGH);        //
            }
            }

          

         
      }else{

        if (angle <= 258 && angle > 180){              // tourner à gauche 
          x = distance * cos (angle * PI/180 - PI);       // coordonnées de l'obs en mm 
          l = distance * sin (angle * PI/180 - PI);       // 
          if ( x<= 5000 && x >= 120 && l <= 555 && distance_obs>distance){  //condition pour que l'obs appartienne à la zone de détection et que l'obs détecté soit le plus proche
              distance_obs=distance;                   //nouvelle distance obs
              obs_gauche = 0;                          
              obs_droite = 1;

            }
          }
      }

        if (angle >= 102 && angle <= 180){        //tourner à droite
          l = distance * cos (angle* PI/180  - PI/2);        // coordonnées de l'obs en mm
          x = distance * sin (angle* PI/180  - PI/2);        // 
            if ( x<= 5000 && x >= 120 && l <= 555 && distance_obs>distance){  //condition pour que l'obs appartienne à la zone de détection et que l'obs détecté soit le plus proche
             
              distance_obs=distance;              //nouvelle distance obs     
              obs_gauche = 1;
              obs_droite = 0;
            
            }
      }
      old_angle = angle;                          //Mise a jour de la valeur de l'angle

    
    }else {
      // printf("Fail to get scan point!\n");
      delay(1);
    
    }
    
    
  } 

Ensuite, nous nous sommes servis des entrées/sorties digitales de notre carte Arduino afin de transmettre, en fonction des valeurs (0 ou 1) reçues, la commande à effectuer. Cette seconde carte contient le programme permettant de faire tourner le moteur chargé de la rotation du volant. Ce programme était fourni avec le moteur, nous l’avons simplement légèrement ajusté à nos besoins.

Motorisation:

Dans un premier temps, notre but était de fixer le moteur au kart. Nous avons utilisé le même principe que pour un vélo électrique. Nous avons intégré une partie rigide d’un cadre d’un ancien vélo. Puis, l’objectif consistait à relier le moteur au pignon par la chaîne mais aussi de raccorder le pignon à l’arbre. Pour cette dernière étape, nous avons créé une pièce 3D afin d’entraîner tout l’essieu arrière du kart.

Toutefois, lors de la mise en fonctionnement du moteur, nous avons été confrontés à un problème majeur qui a été la perte de puissance dû au soulèvement de l’essieu arrière. Pour essayer de résoudre ce problème, nous avons pensé à la réalisation d’une pièce 3D fixée aux suspensions pour empêcher ce soulèvement. Malheureusement, cette pièce a rompu lors de notre premier test car nous avions sous-estimé la pression soumise par l’essieu arrière sur la pièce. Le temps nous a manqué pour en concevoir une plus solide.

Carrosserie:

La dernière étape de notre projet a consisté à réaliser une carrosserie nous permettant ainsi de rendre notre véhicule plus esthétique. Dans ce but, nous avons utilisé des planches de contreplaqué que nous avons fixé au châssis à l’aide de vis. Nous nous sommes ensuite attelés à peindre notre kart aux couleurs de l’école.

Conclusion:

Nous sommes ravis d’avoir pu travailler sur ce projet à travers lequel nous avons appris énormément sur la mécanique et la programmation mais aussi l’organisation du travail en équipe. Au vu des difficultés rencontrées, nous sommes fiers du travail accompli bien que celui-ci ne soit pas pleinement abouti. Nous souhaitons particulièrement remercier notre tuteur de stage M. Lagrange, ainsi que toutes les personnes qui nous ont aidés sur ce projet: Boris pour toutes nos questions au fablab, M.Guyonneau pour son aide sur la programmation du capteur et enfin M.Bouljroufi pour ses conseils.

Nous vous remercions d’avoir lu notre blog et espérons qu’il vous ait plu.

Hugel Gaspard

Piccin Nathan

Denous Mathis

Genest Ethan

Liens des images utilisées:

Douille lisse nervurée : https://www.disumtec.com/fr/arbre-cannele-din-5463/55130009-douille-lisse-nervuree-din-5463.html

Arbre cannelé: https://www.prodealcenter.fr/arbre-cannele-1-3-8-6-cannelures-longueur-500-mm-1811428.html

Cardan : https://www.euromatik.fr/genouillere-cardan/2737-genouillere-acier-hexagonal-10-mm-hexagonal-10-mm-3663107017257.html

Moteur : https://www.conrad.com/en/p/joy-it-stepper-motor-nema-23-01-nema-23-01-3-nm-4-2-a-shaft-diameter-8-mm-1597326.html

Carte Arduino : https://store.arduino.cc/products/arduino-uno-rev3

Capteur YDLIDAR : https://www.generationrobots.com/fr/403021-telemetre-laser-360-degres-yd-lidar-g2.html

Projet Double Pendule


Présentation du projet

Bonjour nous sommes Ewan BUDOR et Antoine HOMMETTE deux étudiants en deuxième année à Polytech Angers. Et aujourd’hui nous allons vous présenter Le projet Double Pendule – Balancing Bot.

Notre projet consiste à concevoir et fabriquer la partie mécanique d’un robot basé sur le principe de fonctionnement d’un segway pour maintenir son équilibre. En ajoutant une extension pour en faire un double pendule.

Vidéo de présentation du robot

Intro

Nous avons choisie de diviser notre travail en 6 étapes. Et aujourd’hui nous allons vous les expliquer :

  • Schéma fonctionnel
  • Recherche des composants 
  • Choix du design général 
  • Conception des pièces 
  • Fabrication des pièces 
  • Montage du robot 

Schéma fonctionnel

La première étape a été de créer un schéma fonctionnel du robot. Nous avons identifié les composants nécessaires pour le fonctionnement du robot. Ensuite, nous avons relié ces composants pour représenter le fonctionnement du robot avec les flux d’informations et d’énergie. Ce schéma a été soigneusement élaboré pour éviter les erreurs et gagner du temps. Nous avons présenté plusieurs versions de ce schéma à M. Mercier, qui nous a donné des conseils pour l’améliorer.


Recherche des composants 

La deuxième étape était la recherche des composants nécessaires pour notre robot. Nous avons trouvé la plupart des éléments à Polytech, grâce à M. Mercier qui nous a fourni les composants électroniques essentiels. Étant donné que le niveau en électronique et codage était trop élevé pour nous. Et aussi car nous ne nous occupions pas de la partie programmation du robot.

Ensuite, nous avons recherché les modèles 3D dans des bibliothèques en ligne telles que GrabCAD et Pololu pour planifier les dimensions et l’assemblage des pièces. Cependant, cette étape s’est révélée difficile et a pris beaucoup de temps en raison de la complexité à trouver les modèles 3D appropriés.


Choix du design général

La troisième étape a été de réfléchir à l’esthétique générale que nous souhaitions donner au robot, avec l’objectif qu’il soit attrayant pour le grand public. Nous avons recherché des idées sur Internet en examinant des robots déjà existants, mais nous n’avons pas trouvé ce que nous recherchions. Nous avons donc élargi notre recherche à d’autres supports tels que les films et les jeux vidéo, où l’esthétique est plus importante. Finalement, nous avons trouvé notre principale source d’inspiration dans le jeu Borderland.

Nous avons apporté quelques modifications pour adapter le design aux composants que nous avions. Par exemple, nous avons remplacé le modèle à une roue par un modèle à deux roues et utilisé l’antenne comme second pendule. Ensuite, nous avons simplifié le design avant de commencer la conception assistée par ordinateur (CAO).


Conception des pièces 

La quatrième étape est la conception des pièces, nous avons créé chaque pièce en 3D pour relier la conception à la réalité. Nous avons utilisé SOLIDWORKS, un logiciel de CAO, pour créer les pièces en tenant compte des dimensions et des contraintes de fabrication. Nous avons importé les pièces existantes dans un assemblage pour visualiser notre travail.

En partant de la base des pièces existantes, nous avons conceptualisé la structure du robot en utilisant des poutres profilées en aluminium pour soutenir la partie supérieure. Nous avons ajouté des plaques en dibond pour renforcer la structure et fournir de l’espace pour les composants. Nous avons laissé plus d’espace que nécessaire pour permettre d’éventuelles modifications ou ajouts futurs.

Ensuite, nous avons créé les pièces qui constituaient la majeure partie de l’esthétique extérieure du robot. Nous avons utilisé du dibond pour les plaques du carénage et des équerres en plastique imprimées en 3D pour les fixer, en donnant à notre robot la forme d’une pyramide inversée. Nous avons conçu un carénage qui englobe la majorité du robot.

Enfin, nous avons réalisé les finitions. Nous avons créé des supports pour le pendule, avec des roulements à billes pour l’axe de rotation. Nous avons fixé une partie du pendule à l’aide de plaques métalliques et ajouté une centrale à inertie. Nous avons également créé un cache pour l’écran, en veillant à ce que l’accès aux boutons soit facilité. Des supports ont été prévus pour les capteurs à ultrasons, avec des designs différenciés pour l’avant et l’arrière du robot. Nous avons fixé la batterie en bas de la coque avec des attaches en plastique.

Ces étapes de conception nous ont permis de concrétiser notre robot en prenant en compte à la fois l’aspect esthétique et fonctionnel.


Fabrication des pièces

La cinquième étape est la fabrication des pièces du robot, pour cela nous avons utilisé plusieurs machines mises à notre disposition, notamment une machine de découpe CNC pour usiner les plaques en dibond. De plus, nous avons eu recours à des imprimantes 3D afin de créer des pièces plus complexes, telles que les supports de carénage et de pendule. En plus, nous avons utilisé plusieurs outils du fablab tels qu’une perceuse, une scie à métaux, des étaux, des pinces et un étau. 


Montage du robot 

La dernière étape est le montage du robot. Pour pouvoir monter le robot plus rapidement pendant la création des pièces, nous assemblions le robot. Nous avons commencé par la partie inférieure, en utilisant les pièces du châssis pour former une base solide. Nous avons rencontré quelques différences entre la conception et la réalité, mais nous avons pu apporter rapidement des ajustements. Ensuite, nous avons monté la structure, les premiers composants internes et les carénages, malgré quelques problèmes de conception. Nous avons réussi à assembler toute la partie inférieure du robot.

Nous avons également monté le pendule et son support, en testant différentes pièces jusqu’à trouver un assemblage qui permettait au pendule de se déplacer librement tout en restant aligné.

Enfin, nous avons fixé le pendule sur le sommet du robot et installé les derniers composants tels que le cache d’écran avec la carte et le cache, ainsi que les capteurs à ultrasons.


Nos avis sur le projet.

« Malgré une légère frustration de ne pas pouvoir voir notre robot en fonctionnement pour l’instant, j’ai réellement pris plaisir a effectuer ce projet. Je suis devenu plus autonome et j’ai appris énormément.   »

Ewan BudoR

« Ce projet a été une expérience incroyablement enrichissante et stimulante, malgré mes réticences initiales. J’ai développé un réel engouement pour la conception et la réalisation du robot. »

Antoine HOMMETTE

Si cet article vous a plu je vous invite à venir lire notre rapport de projet qui vous permettra d’en apprendre plus sur le projet Double Pendule.



Projet PEIP 2A – Vélo à hydrogène

Le VTT à hydrogène

Chers lecteurs

Tout au long de ce blog vous allez découvrir le récit de notre épopée dans le monde de l’hydrogène, de l’innovation et des vélos. Gardez bien vos mains sur le guidon 😉

Introduction

Nous sommes Malo, Anand et Paul, 3 étudiants en 2eme année de cycle préparatoire à Polytech Angers. Passionnés par l’innovation, la qualité et la mécanique, nous nous sommes donc vite intéressés à ce projet puisqu’il répondait à nos envies. De plus, l’enjeu du monde de demain nous tiens à cœur, c’est pour cela que l’opportunité de pouvoir concevoir un mode de déplacement plus respectueux de l’environnement est un critère majeur qui nous a attiré vers ce projet. 

L’objectif principal de notre projet est de concevoir un vélo innovant alimenté par une énergie verte capable d’avoir une autonomie supérieur à celle disponible sur le marché, c’est à dire une autonomie supérieur à 150km. En plus de cela il nous fallait proposer une solution innovante qui n’existe pas sur le marché afin de répondre à notre cahier des charges.

Néanmoins, notre projet se séparait en deux grosses missions principales. La première fut une étude approfondi de l’hydrogène et la deuxième fut la conception de notre vélo sur le logiciel SolidWorks.

L’hydrogène

Pour commencer notre projet, nous avons fait de nombreuses recherches sur l’hydrogène. Ces recherches portaient sur ses normes de sécurité (transport, mise en bouteille…), son fonctionnement et sa production. Tout d’abord, il faut savoir qu’il existe très peu de normes quant à l’utilisation de l’hydrogène pour un vélo donc nous nous sommes basé sur les normes communes et sensées. Une des normes les plus complexes quant à son utilisation fut le fait que l’hydrogène doit être stocké dans une bonbonne faite d’une seule pièce, pas de soudures ni bonbonnes classiques. Cela nous a donc imposé de rechercher des fabricants de bonbonnes à hydrogène pour pouvoir avoir les bonnes caractéristiques et informations.

Une fois les normes analysées et pris en compte, il nous fallait comprendre comment on obtenait de l’électricité à partir d’hydrogène. Pour cela, il ne faut rien de plus qu’une pile à combustion. “Mais comment cela fonctionne ?” me demanderiez-vous. Ne vous en fait pas, le processus est plutôt simple à comprendre. Son fonctionnement repose sur un mécanisme appelé oxydoréduction, avec une pile à combustible (PAC) composée de deux parties : une cathode réductrice et une anode oxydante, séparées par un électrolyte contenant des catalyseurs. Mais pour que la pile fonctionne, elle a besoin d’être alimentée en hydrogène. L’anode provoque l’oxydation de l’hydrogène, libérant ainsi des électrons. Sous l’effet de l’électrolyte chargé en ions, ces électrons circulent dans un circuit extérieur, générant un courant électrique constant. À la cathode, les électrons et les ions se rejoignent, puis se combinent avec un autre combustible, généralement de l’oxygène. Cette réaction de réduction produit de l’eau, de la chaleur et un courant électrique. Une fois ces étapes réalisées, la pile continuera de fonctionner tant qu’elle sera alimentée en hydrogène.

Fonctionnement de la pile à combustible

Néanmoins, la production d’hydrogène aujourd’hui n’est pas très verte. Malheureusement, cette dernière est produite à 96% par méthode de vapoformage qui consiste à extraire l’hydrogène grâce à des énergies fossiles. Tout cela est donc un peu contradictoire avec le but voulu de décarbonation due à l’utilisation de l’hydrogène. Mais, heureusement pour nous, après plusieurs recherches sur les sites du gouvernement nous avons trouvé que l’État français s’est engagé à débloquer une enveloppe de 20 milliards d’Euros sur la prochaine décennie pour investir dans des énergies vertes telles que l’hydrogène. Cette enveloppe ira notamment vers le financement de production d’hydrogène par électrolyse et biomasse.

Schéma du procédé de vapoformage.

Lien vers l’article :

https://www.techniques-ingenieur.fr/base-documentaire/procedes-chimie-bio-agro-th2/fabrication-des-grands-produits-industriels-en-chimie-et-petrochimie-42319210/hydrogene-j6368/
Schéma de fonctionnement de l’électrolyse.

Lien vers l’article :

https://www.h2life.org/index.php/fr/hydrogene/sources/electrolyse

La conception via SolidWorks

Pour la partie conception nous allons nous servir de l’amortisseur pour vous montrer la plupart des fonctions SolidWorks utilisées tout au long du projet.

Pour commencer, nous avons fait la fermeture du ressort. Celle-ci s’est faite en 4 étapes simples.

1 – On commence par un bossage extrudage pour la forme principale dans laquelle on perce un petit trou aux dimensions de votre choix.

2- Par la suite on fait la partie accroche qui est tout simplement un bossage extrudage des dimensions de votre choix.

3 – Pour faire l’arrondi de l’attache il suffit de lui appliquer un congé.

4 – Et enfin, pour finir l’accroche il vous faudra la percer grâce a la fonction enlèvement de matière où il vous faut mettre l’esquisse de la forme à enlever.

Suite à ça il faut faire le tampon (partie centrale) du ressort/amortisseur. Ce dernier se réalise en 2 étapes.

1 – Pour commencer il faut sélectionner la fonction bossage avec révolution. Suite à ça il faut définir un axe centrale. Puis il faut dimensionner le reste de son esquisse tel que sur l’image si contre. Une fois l’esquisse fermée et complète et fermer l’esquisse. Une fois cela fait la forme va se faire toute seule et voilà, vous avez votre forme.

2 – Ensuite, il suffit juste de faire un enlèvement de matière après avoir tracé votre esquisse.

Après avoir réaliser votre tampon il vous faut réaliser son capuchon. Ce dernier se réalise en 4 étapes.

1 – Pour faire votre forme il vous faire un bossage avec révolution. Cela reviens à faire le premier processus du tampon, c’est à dire tracer l’esquisse voulu et la révolutionner.

2 – Une fois la forme obtenu n’hésitez pas à la rendre plus esthétique en arrondissant son arête supérieur.

3 – Percez un léger renfoncement, ceci est à but esthétique mais vaut quand même le coup.

4 – Percez le trou central de votre bouchon. Attention, ce dernier doit être de même diamètre que celui du tampon… Puis une fois cela fait rien ne vous empêche de rendre votre pièce plus esthétique avec des chanfrein ou encore des arrondissements.

Maintenant nous allons passer à la partie la plus complexe de la conception de l’amortisseur; le ressort.

1 – Pour commencer il vous sélectionner la fonction “hélice” dans l’onglet “courbes”. Suite à cela, il vous sera demander de tracer votre base. Dimensionnez là selon vos besoins.

2 – Une fois votre base tracé il vous faudra dimensionner votre hélice. Suivez bien les spécificités ci-contre tout en sélectionnant la hauteur de votre choix.

3 – Suite à cela, allez dans “Insertion” -> “géométrie de référence” -> “Plan”. Une fois cela fait créez votre plan parallèle au “plan de droite” déjà existant.

4 – Vous allez maintenant créer les extrémités de votre ressort. Pour se faire il va vous falloir sélectionner la fonction “hélice” dans l’onglet “courbes”. Suite à cela, il vous sera demander de tracer votre base. Dimensionnez là selon vos besoins.

5 – Une fois votre base tracée veuillez suivre les instructions suivantes pour obtenir une extrémité de votre ressort. Si cette dernière est dans le mauvais sens, ne vous en faites pas vous pouvez modifier ce dernier.

6 – Pour vous faciliter la conception de l’extrémité supérieur de votre ressort il va vous falloir créer un plan. Allez dans “Insertion” -> “géométrie de référence” -> “Plan”. Une fois cela fait créez votre plan parallèle au “plan de dessus” déjà existant.

7 – Maintenant que la conception d’hélices n’a plus de secrets pour vous il vous sera facile de faire les premières étapes. Une fois ces dernières effectuées suivez les étapes ci-contre. Si c’est dans le mauvais sens, ne vous en faites pas vous pouvez modifier ce dernier.

8 – C’est bien beau d’avoir trois courbes distinctes mais il serait encore plus belle d’en avoir une seule composée des trois courbes faites précédemment. Pour cela allez dans “Courbes” -> “courbe composite” puis sélectionner vos trois courbes. Le logiciel se charge de les relier pour vous.

9 – Maintenant que vous avez votre hélice en un seul morceau il vous faut créer son corps. Sélectionnez “Bossage balayé”, créez votre esquisse, sélectionnez l’hélice et le logiciel se charge du reste.

10 – Maintenant que vous avez votre ressort nous pouvons passez aux étapes finales. Pour ce faire, vous allez sélectionner “Enlèvement de matière extrudée”. Tracez un trait qui coupe le cercle de votre esquisse en deux. Puis mettez les paramètres ci-contre. Si jamais il vous reste seulement le mauvais bout, ne vous en faites pas, cliquez sur “Basculer côté pour enlever la matière”. Refaites cette même étape pour l’autre bout de votre ressort.

11 – Maintenant que votre ressort est complet il ne vous reste plus qu’à créer un plan central. Allez dans “Insertion” -> “géométrie de référence” -> “Plan”. Une fois cela fait créez votre plan parallèle au à la base coupée de votre ressort.

12 – Une fois toutes vos pièces terminées il ne vous reste plus qu’à les assembler. Servez vous des axes et des faces des pièces pour les contraindre entres-elles.

Maintenant que vous savez tout sur l’hydrogène et sur les principales fonctions SolidWorks vous êtes des pros pour pouvoir prendre en main un projet tel que celui-ci. Sur ce, nous espérons que cet article vous a plu et vous a été utile.

Merci pour votre lecture !!!

Projet Propulseur de Balle de Ping-pong

Réalisé par Noé CARO, Chloé MICHENEAU, Antoine BEILLOUIN et Martin BLANC tutoré par Monsieur KACHIIT, notre projet s’est porté sur la confection d’un propulseur de balle de ping-pong capable de propulser la balle à différentes distances (1 m, 1,50 m et 2 m). Ce projet exclusivement mécanique et pivotable serait utile pour des joueurs qui voudraient s’entrainer à recevoir des balles à des zones précises.





Aperçu de l’utilisation du propulseur de balle de ping-pong.


OBJECTIFS ET CONTRAINTES

  • -La propulsion doit être purement mécanique.
  • -Le lanceur doit tenir dans un cube de 250 mm de côté.
  • -Le lanceur doit être muni d’un système de réglages afin d’atteindre les différentes cibles.
  • -Le projectile est une balle de ping-pong dont le diamètre est compris entre 38 mm et 40 mm.
  • -Le choix des matériaux est totalement libre.

RÉALISATION DU PROJET

Étape 1 : Analyse du sujet / Choix et conception 3D des pièces

Avec les contraintes imposées, nous sommes partis sur l’idée de confectionner le propulseur qui fonctionnerait avec un ressort dans un tube. Ce ressort serait comprimé à différents niveaux en fonction de la distance souhaitée. Il serait le lien entre la base du tube et le support de la balle. Le tube serait maintenu à l’aide d’une charnière fixée sur un socle. Ce socle pourrait tourner par rapport à un autre grand socle plus lourd.

Charnière

La charnière :

La charnière se présente sous la forme d’un assemblage de deux pièces conçue pour être solide afin de supporter le poids du tube. La charnière permettra une liaison pivot qui servira à ajuster l’angle de projection.

Le ressort serait compressé à l’aide d’un crochet inséré dans le support de la balle. Les différents crans se présenteront sous la forme d’une boîte de vitesses.

Le tube :

Les différents crans serviront à compresser plus ou moins le ressort afin de le projeter soit à 1 m, 1,50 m ou 2 m.

Système “boîte de vitesses”

Toutes les pièces sont confectionnées à l’aide de SOLIDWORKS, même si elles ne seront pas toutes usinées. Cela nous a permis de nous représenter la finalité de notre projet.

Conception de notre projet

Assemblage :

Voici l’idée de notre lanceur de balle de ping-pong, sans avoir décidé les matériaux.

Étape 2 : Choix des matériaux

Notre projet sera principalement construit en bois de hêtre, de plexiglas et de métal. Le bois qui est lourd est choisi pour les deux socles qui sont les pièces les plus lourdes. Le bois de hêtre est récupéré d’une chute (démarche écologique), c’est un bon rapport qualité-prix. On retrouvera ce matériau dans le support du ressort qui se retrouve à l’arrière du tube. Nous avons ensuite désiré choisir un tube en plexiglas transparent. Ce matériau en plus d’être un bon rapport-qualité facilement usinable permet aussi de voir le système de propulsion en entier. Les pièces métalliques sont nécessaires pour apporter une stabilité grâce à l’heure solidité (la charnière). Le support de balle sera lui aussi en acier car il nécessaire d’avoir un support lourd afin d’avoir un écart important entre chaque cran de la “boîte de vitesses”.

Cependant, nous effectuerons les tests avec d’autres matériaux pour le support de balle associés à différentes raideurs afin de prévoir de possibles forces de frottements qui n’auraient pas été prises assez en compte.

Étape 3 : Commande des pièces

Après les calculs théoriques, il nous faut maintenant trouver / confectionner les pièces pour que la pratique se rapproche au mieux de la théorie. Les pièces en bois seront usinées à Polytech dans un bloc de bois acheté chez Leroy Merlin tout comme les vis et les boulons. Le support de balle en acier, les ressorts ainsi que le tube en plexiglas viennent eux d’entreprises spécialisées.

Étape 4 : Usinage / Assemblage

Ayant les pièces à disposition, la prochaine étape est d’usiner les pièces. Les pièces en bois (les deux socles et un support de balle) sont découpées à l’aide d’une fraiseuse. Une découpe laser est plus adaptée pour le support de balle en plexiglas. Le tube en plexiglas est lui percé puis limé dans sa longueur. La charnière qui est la pièce la plus complexe est confectionnée avec une imprimante.

En assemblant les pièces usinées, nous sommes relativement satisfaits du résultat, la pratique ressemble plutôt bien à la conception 3D. Les déceptions sont juste l’opacité du tube et les imperfections dans les découpes de la fente du tube. Ces défauts s’appliquent sur le prototype mais seront corrigés pour les prochains tubes.

Premier prototype de notre propulseur de balle

Étape 5 : Tests et résultats

Premier test avec les matériaux et le ressort de notre choix initial :

  • Lancer à 1 m : D=0.65m
  • Lancer à 1,5 m : D=0.7m
  • Lancer à 2 m : D=1.02

Il est donc évident que des forces de frottements n’ont pas été prises en compte. Nous avons donc procédé autrement afin de respecter le cahier des charges. Nous avons choisi d’utiliser un marqueur sur un tube pour définir les taux de compression expérimentalement. En utilisant des taux de compression environ deux fois plus grands que d’après nos calculs, nous retrouvons bien les distances imposées.

Notre projet en action !

AVANTAGES DE NOTRE PROPULSEUR DE BALLE

Notre projet est idéal pour s’entraîner :

Il est parfait pour améliorer vos coups, que ce soit les coups droits ou les revers. La balle arrive à plusieurs distances que vous pouvez ajuster à votre guise.

La conception et la construction de notre projecteur de balle respecte la cause écologique :

Il est majoritairement constitué de matériaux recyclables (acier inoxydable, aluminium, bois…). Il est aussi réalisé principalement à Polytech Angers et a donc une faible empreinte carbone.

Le mode d’emploi est simple et instinctif :

Pas besoin d’avoir fait de grandes études pour comprendre son fonctionnement, il suffit de baisser un levier dans différents cran en fonction de la distance souhaitée et de faire pivoter le socle pour modifier la direction de la balle.

Notre projet est entièrement mécanique :

Il ne nécessite en aucun cas d’énergie électrique ou autre. Vous ne serez jamais embêter par une prise ou des problèmes de batterie.

CONCLUSION

Nous sommes fiers et satisfaits de notre travail en général. Nous avons tous aimé travailler en collaboration sur ce projet et nous mettre dans la peau d’un ingénieur. Nous sommes forcément déçus que nos calculs initiaux n’aient pas été concluants mais nous avons réussi à nous adapter et c’est le principal.

Projet PEIP 2A – Robot 5R

La PlotClock

Bonjour à tous !


L’objectif de ce projet est de réaliser une Plotclock où le robot a pour tâche d’écrire l’heure en temps réel. Ce robot fonctionne avec deux bras, composés tous les deux de deux avant-bras, reliés entre eux au niveau de la tête d’écriture. Les deux bras sont dirigés de manière à dessiner l’heure sur l’écran à l’aide de servomoteurs.

Notre robot est équipé, en tête d’écriture, d’une LED UV pour écrire l’heure sur l’écran phosphorescent. Après que le robot est affiché l’heure grâce à la LED UV, elle s’efface toute seule, avec le temps.


Voici quelques étapes de la conception de notre robot en passant par la CAO, la programmation, l’électronique et bien sûr quelques problèmes rencontrés.


Notre projet a débuté par une phase de recherche

Avant de nous lancer dans la conception de notre robot, nous avons cherché à comprendre comment un robot 5R fonctionne. Pour cela, nous avons fait de nombreuses recherches sur la cinématique inverse, les angles que les servomoteurs doivent réaliser afin que la tête d’impression aille aux coordonnées cartésiennes que nous souhaitons. Pour cela nous avons fait des simulations avec les servomoteurs sur TinkerCAD pour comprendre comment manipuler les servomoteurs et comment fixer les angles afin de pouvoir maîtriser les mouvements des bras.

Simulation des servomoteurs avec potentiomètres à l’aide du logiciel TinkerCAD

Après ces essais et de nombreux schémas, nous sommes parvenus à établir trois fonctions qui seront utiles pour déplacer les bras aux coordonnées souhaitées :

//consine formula function
double cosineRule(double a, double b, double c) {
    return acos((sq(a)+sq(c)-sq(b))/(2*a*c));
}

//distance computation macro 
#define dist(x,y) sqrt(sq(x)+sq(y))

//atan2 formula macro 
#define angle(x,y) atan2(y,x)


Conception de notre robot sur SolidWorks

La deuxième étape est de concevoir notre robot sur Solidworks. Nous avons modélisé les bras, les avant-bras, le socle et son couvercle. Le socle, le robot en lui-même, contient les servomoteurs ainsi que le ruban phosphorescent qui a été placé dessus. Lors de la modélisation des bras, nous avons fait face à un problème majeur. En effet, lors de la première impression, les bras et les avant-bras étaient de la même taille, en plus d’être trop long. En faisant des essais avec les servomoteurs, nous nous sommes rendus compte qu’à cause de leur taille, les bras allaient trop facilement dans leur position limite. C’est-à-dire comme le montre l’image suivante :

Voici quelques vues de nos bras, de notre socle et enfin de l’assembage de notre robot avant l’impression, après avoir rectifier le problème rencontré :

Modélisation du bras 1
Modélisation du bras 2

Ce bras ci-dessus (bras 2) est un peu plus épais que les autres afin qu’on puisse garder la tête d’écriture parfaitement parallèle par rapport à l’écran de ruban.

Modélisation du bras 4 (avec la tête d’écriture)
Vidéo de l’impression 3D des bras du robot
Modélisation du socle
Vidéo de l’impression 3D du socle de notre robot

Après avoir modélisé chaque pièce une par une, nous les avons assemblées afin de mieux visualiser notre robot final.

Modélisation de l’assemblage complet

Assemblage & programmation de notre robot

Ensuite, une fois l’impression terminée, les bras réimprimés plus petits, nous avons assemblé chaque composant entre eux, collé le ruban adhésif phosphorescent sur le robot, fixé les bras sur les servomoteurs. Après avoir reçu tous nos composants dont le module horloge afin d’écrire l’heure correctement, nous avons soudés et connectés les câbles sur la carte Arduino.

Voici une image de notre robot avec tous les câbles assemblés. Sur l’image de droite, vous pouvez voir un schéma de l’assemblage sur TinkerCad afin de mieux visualiser les branchements de chaque composant.

À partir de ce moment-là, nous devions essayer le programme que nous avions développé en même temps que la modélisation et l’impression. Lors du lancement de notre programme, le robot affichait l’heure mais à l’envers c’est-à-dire en mode miroir (comme vous pouvez le voir sur la vidéo ci-contre). Nous avions donc un problème avec notre repère des coordonnées. En effet, en faisant de multiples tests, nous avons compris que le sens de l’axe des x était inversé.

Après avoir identifié le problème, nous devions le corriger dans notre programme, inverser le sens des chiffres, mais aussi inverser le sens de l’écriture. Nous avons donc modifié les coordonnées de chaque chiffre et nous avons repensé leur position sur l’écran d’écriture. Dû au fait d’une calibration non parfaite, des petits réglages ont été effectués pour que les chiffres soient droits. Prenons l’exemple du chiffre 2 :

Avant l’ajustement :

 case 2: 
            digitStart(0,3/4);
            digitArc(1/2,3/4, 1/2,1/4, 1/2, -1/8);
            digitArc(1,0, 1,1/2, 3/8, 1/2);
            digitMove(1,0);
            break;

Après l’ajustement

case 2: 
            digitStart(1,3/4);
            digitArc(1/2,3/4, -1/2,1/4, 1/2, -1/8);
            digitArc(0,0, -1, 1/2, 3/8, 1/2);
            digitMove(0,1/4);
            break; 

Pour finir, pour que notre robot soit autonome, nous avons ajouté une batterie. De plus, nous voulions mettre un interrupteur afin qu’on puisse éteindre l’alimentation de notre carte Arduino pour que la batterie dure plus longtemps. Nous nous sommes vites rendus compte que notre module horloge devait être alimenté en continue pour qu’il écrive l’heure en temps réel. Notre projet de mettre un interrupteur n’était donc pas possible avec ce module horloge. Il existe d’autres modules horloge qui possèdent une pile intégrée afin qu’ils restent constamment alimenter pour qu’ils ne perdent pas l’heure. Nous avons donc décidé de mettre des piles rechargeables 6V de 1600mA pour éviter qu’elles ne se déchargent trop vite.


Bilan & Critiques

Ce projet a été très enrichissant et intéressant. Nous avons pu mettre à profit de nombreuses compétences notamment en conception mais aussi en électronique, en électricité et en programmation. La partie la plus dure a été la programmation avec un langage qui était nouveau pour nous.

De plus, nous avons appris à être autonome et prendre des décisions dans un projet de A à Z. Savoir se débrouiller face à différents problèmes et ne pas abandonner sont aussi deux points importants dans un projet. De plus, le travail d’équipe est une compétence essentielle pour le bon déroulement d’un projet. Nous avons donc dû savoir s’écouter entre coéquipier, exprimer chacun ses idées. Nous n’étions pas forcément toujours d’accord sur certaines choses mais en discutant ensemble, nous trouvions toujours un compromis.

Notre robot n’est qu’un prototype, il y a donc certaines choses à améliorer comme l’alimentation de la carte Arduino ou bien le module horloge. De plus, nous pourrions développer davantage notre programme pour qu’il est différente fonctionnalité comme écrire la date ou dessiner quelque chose demandée par l’utilisateur. Pour aller plus loin, développer une application pour le diriger depuis son portable pourrait être intéressant afin d’avoir de multiples fonctionnalités.

Nous tenons à remercier notre référent, M. LAGRANGE, pour nous avoir aider et guider tout au long de ce projet.

Merci pour votre lecture !!!

Mohamad DEIRI / Méline TARLEVE

Automate animé : la création de notre panda

Bonjour à tous !


Nous sommes 3 étudiants en deuxième année de cycle préparatoire à Polytech Angers. Lors du 4e semestre, nous avions 100h pour réaliser un projet. Nous avons tous les trois choisi de travailler sur le projet d’automate mécanique. L’animal que nous avons choisi d’animer est un panda. Dans cet article, nous vous présentons les objectifs du projet et ce que nous avons fait pour les atteindre !
Bonne lecture !

1 – L’objectif de ce projet

Ce projet a pour objectif de nous faire concevoir un automate mécanique en s’inspirant de la méthode que les studios Disney utilisaient.

Disney utilisait des automates motorisés lors de la création de leurs films d'animation. Ces automates leur servaient de base à la création d'un mouvement à animer.

La méthode de Disney consiste à utiliser des roues dentées et des bielles, liées les unes aux autres avec un système d’engrenages. De cette manière, la mise en rotation d’une roue dentée engendre le mouvement complet de l’automate.

2 – Prototype

Nous avons tout d’abord conçu une seule patte, pour être sûr d’avoir quelque chose de propre et de fini à la fin du projet. Cela nous a bien aidé à prendre en main le logiciel de CAO et à modéliser, pas à pas, le mouvement d’une patte arrière de panda. Nous avons fait beaucoup de recherches sur l’anatomie du panda et sur sa façon de se déplacer avant de commencer le design des pattes.

Nos premiers essais en CAO n'étaient pas très concluants. Nous utilisions, comme Disney, deux engrenages pour une seule patte. Il fallait donc prendre en compte beaucoup de variables. Pour simplifier notre travail, nous avons fait le choix de n'utiliser qu'une seule roue. Le mouvement est donc déclenché à partir d'un seul point, au lieu de deux.

Une fois la CAO de notre prototype vérifiée par notre professeur, nous avons imprimé les différentes pièces grâce aux imprimantes 3D du fablab. La roue est munie d’une manivelle pour permettre le mouvement.

3 – Corps entier : la CAO

Nous sommes ensuite passé à la CAO du corps entier.
Nous avons procédé comme suit :

  • Conception d’un bâti qui servira de corps au panda
  • Conception des pattes avant
  • Réflexion sur la manière de transmettre le mouvement des pattes arrière aux pattes avant (une seule roue/train d’engrenage)
  • Modélisation du mouvement des pattes avant
  • Conception des arbres constituant le train d’engrenage
  • Conception d’une tête en CAO qui servira de référence pour la fabrication de la tête
  • Modélisation du mouvement de la tête et ajout d’un arbre supplémentaire sur le corps du panda pour ajouter la tête mobile à l’assemble (la bielle de la tête est liée au corps par une ficelle qui est attachée à une roue)

C’est ce genre de système avec une ficelle que nous avons utilisé pour la tête. Pour le premier test, nous avions mis une bielle, cela ne fonctionnait pas bien.

Nous avions déjà une petite expérience sur la modélisation de mouvement de patte grâce à notre prototype, alors il n'a pas été compliqué de créer le mouvement des pattes avant. Nous avons choisi de transmettre le mouvement avec un train d'engrenage pour que les pattes arrière et avant n'aient pas le même mouvement, afin que ce dernier soit plus proche de la réalité.

Finalement, voici la version finale ET animée de notre panda en CAO :

Nous n’avons pas pu modéliser le mouvement de la tête en CAO.

4 – Corps entier : le montage

Nous avons donc imprimé toutes les pièces nécessaires :

  • 9 roues
  • 13 bielles (3 par pattes + 1 pour la tête)
  • 4 pattes (toutes constituées de 3 parties à assembler)

Il a aussi fallu créer le corps du panda grâce à des planches de bois. Nous avons utilisé la Charly Robot pour que nos perçages soient bien précis. Nous avons ensuite fabriqué la tête du panda avec les moyens du bord (polystyrène et figurine en papier mâché).

Atelier peinture au fablab !

Une fois toutes les pièces du panda prêtes, nous sommes passés à l’assemblage. Nous avons utilisé des tiges filetées et des écrous freins pour nos arbres. Cela n’a pas été de tout repos, mais finalement, nous avons réussi à obtenir un produit fini !

Train d’engrenage de l’automate
Nous voulions mettre un petit moteur sur notre panda, mais nous n'avions pas commandé de moteur adapté et celui que nous possédions n'était pas assez puissant, le couple était trop faible. Nous nous en sommes rendu compte trop tard, alors nous n'avons pas eu le temps de fabriquer une manivelle. Il faut faire bouger les roues intérieures directement à la main pour observer le mouvement complet.

Voici un aperçu du panda tout assemblé en mouvement :

Comme vous le voyez, le mouvement n’est pas très fluide parce que nous n’avons pas de moteur. Avec, le mouvement devrait être bien plus fluide. Nous avons réduit au maximum les frottements des bielles les unes avec les autres en créant des décalages là où ils étaient nécessaires, mais il aurait aussi fallu trouver une solution pour les frottements entre le corps et les arbres.

5 – Ce que nous retenons de cette aventure

Même si notre panda n’est pas parfait, nous sommes fiers d’avoir pu terminer à temps le montage. Nous sommes aussi satisfaits de voir qu’il fonctionne.
Ce projet nous a permis d’apprendre beaucoup de choses en mécanique et d’améliorer notre utilisation des outils informatiques à notre disposition. C’était aussi très intéressant de travailler en groupe tout au long de ce projet car les échanges ont été riches !

Nous espérons que notre article vous a permis de comprendre les étapes de création de notre panda ! Merci pour la lecture !

Laetitia Baudard/Thomas Voclin/Sixtine Brun

Projet : La Voiture à Ressort

Bonjour à tous !

  1. Présentation

Nous sommes 4 étudiants de 2ème année d’école d’ingénieur en cycle préparatoire à Polytech Angers.

En fin d’année 2021-2022, nous avions comme projet de réaliser une voiture à ressort.

Voici Notre Article à propos de ce projet.

L’objectif de notre projet est d’imaginer et de concevoir une voiture à ressort capable de parcourir au moins 15 mètres, à l’aide d’un mécanisme s’inspirant du modèle de fonctionnement d’une horloge.

Notre Voiture à Ressort

Avant de commencer, permettez-nous de vous présenter les raisons de notre choix…

  1. Pourquoi une Voiture à Ressort ?

Parmi tous les projets proposés, c’est celui-ci qui nous plaisait le plus car il nécessitait avant tout des compétences en mécanique, en CAO et sur les propriétés des matériaux. Nous avions particulièrement apprécié ces matières durant notre 2ème année de cycle préparatoire et c’est donc pour cela que nous n’avons pas hésité à choisir ce projet.

De plus, nous avions l’habitude de manipuler ce genre de jouet quand nous étions plus jeunes et ce projet était pour nous l’occasion de retourner quelques années en arrière…

  1. Réalisation du projet
Mise en plan du mécanisme

La réalisation s’est déroulée en plusieurs étapes.

Première étape : nous devions réfléchir sur le mécanisme à adopter, comment faire avancer notre voiture ? Nous avons réfléchi à cette question lors de la première séance, avec l’aide de notre professeur référent, puis nous avons conclu qu’il fallait s’inspirer du modèle de fonctionnement d’une horloge.

Deuxième étape : nous devions imaginer la forme de nos pièces, leur mise en forme, calculer le nombre de dents nécessaire, calculer la vitesse des roues, par exemple…

Après avoir analysé, calculé et obtenu des résultats satisfaisants, il était temps de concevoir la voiture, à l’aide de Solidworks.

  1. Conception Assistée par Ordinateur (CAO)

La phase de modélisation a eu lieu en trois temps.

Premier temps : nous avons réalisé, avec précision et rigueur et en tenant compte des principales contraintes, les pièces suivantes : Ressort, Roue dentée, Spirale, une clé, un lien entre spirale et clé, supports et un arbre centrale.

Deuxième temps : nous prenons en compte les erreurs réalisées lors de la première impression en imprimante 3D, afin d’y effectuer les modifications nécessaires et y ajouter quelques détails pour la deuxième impression.

Troisième temps : impression des roues avant + axe et carrosserie.

Première modélisation CAO
Deuxième modélisation CAO
Troisième modélisation CAO
  1. Problèmes rencontrés…

Nous avons rencontré de nombreux problèmes au cours de la réalisation du projet, qui font que la voiture, dans son état actuel, ne peut pas fonctionner comme on le voudrait. 

Voici principalement les causes de nos principaux problèmes rencontrés :

- L'impression des pièces, souvent trop longues et parfois dans l'obligation de recommencer (notamment le cas pour la carrosserie, qui demandait environ 2 jours d'impression)

- S'inspirer du mécanisme d'une horloge (bonne base mais limité pour la suite)

- Manque de matériel
Notre Voiture sur la
ligne de départ …

En effet, comme vous pouvez vous en douter, l’impression 3D ne pouvait pas résoudre tous nos problèmes et nous étions parfois dans une impasse à cause d’un manque de pièce.

Par exemple, afin de régler un problème de transmission entre la roue dentée et les roues arrières de notre voiture, nous avons pensé à utiliser des roues libres. Malheureusement, cela nécessite du temps et de l’argent, deux raisons qui font que nous avons abandonnées cette idée.

  1. Bilan du Projet

Tout d’abord, si de futurs candidats pour une éventuelle poursuite du projet souhaitent des idées, nous leur conseillons de donner la priorité aux roues libres et à l’amélioration, notamment de la forme, de la carrosserie, afin de donner un meilleur résultat à l’impression.

Ainsi, pour conclure, nous souhaitons avant tout remercier notre professeur référent, Monsieur Mahmoud Kachit ! Sur un plan personnel, nous sommes un peu déçus de ne pas avoir pu mener ce projet jusqu’à sa fin. Néanmoins, nous sommes ravis et reconnaissants de ce qu’il a pu nous apporter, sachant que cet exercice était pour nous la première véritable occasion de travailler sur un projet concret.

En vous remerciant !

Abonnez-vous à nos réseaux sociaux en cliquant sur leurs icônes !

LEGEAY Guillaume / SARRAF Michel / QUEFFEULOU Ronan / MESNIL Florian

Création d’un robot magicien

Bonjour et bienvenue à vous sur cet article.

Nous sommes Manon Boursicot et Anthonin Devas, deux étudiants de deuxième année à Polytech Angers et comme tous les deuxième année ici, nous devions travailler sur un projet durant une centaine d’heure pendant notre second semestre.

Nous avons choisi en tant que projet de travailler sur un robot, mais pas n’importe quel robot. En effet, notre projet est de créer un robot magicien. Ce robot pourrait servir à Polytech en tant que représentant des projets de deuxième année lors des forums ou portes ouvertes car c’est un projet que l’on peut montrer facilement. Ce projet a été inspiré par un robot existant créé par Mario the Maker Magician dont vous pouvez retrouver des vidéos sur YouTube, comme celle-ci par exemple : https://www.youtube.com/watch?v=WYQEZXXEfhc

Nous n’avons malheureusement pas réussi à terminer notre projet mais nous allons tout de même vous le présenter et vous en parler.

Maintenant, vous vous demandez peut-être ce que veut-dire un “robot magicien”. C’est tout simplement un robot capable de réaliser un tour de magie. Ce projet comprenait beaucoup d’étapes différentes. Pour réaliser ce robot, nous avons dû, tout d’abord, lui trouver un tour. Nous avions comme contrainte supplémentaire qu’il devait le réaliser plusieurs fois d’affilée sans intervention humaine. Une fois trouvé, nous avons dû créer le design, puis le modéliser en 3D avant de finalement l’imprimer grâce aux imprimantes 3D présentes dans l’établissement. Tout ça représente la partie mécanique, à côté de ça, il y avait la partie programmation où nous avons dû créer tous les mouvements que ferait le robot en language Python à l’aide d’une carte Raspberry Pi ainsi que faire fonctionner un écran. 

Le design

Pour le design, nous avions comme contrainte qu’il soit facilement transportable. C’est donc pour cela que nous avons décidé de faire un cube. Nous avons rajouté un bras pour qu’il soit capable de réaliser le tour.

Modèle 3D contenant le cube (en vert) et le bras (en rouge)

Nous voulions donner de la vie à notre robot et du plastique qui bouge ne suffirait pas. Nous avons donc ajouté un écran et créé des animations qui se jouerait pour que le tour soit plus expressif et par la même occasion, cela pourrait distraire une personne qui essaierait pour ne pas qu’elle voit les secrets du tour. Les animations de l’écran représentent le visage de notre robot, nous avons choisi, à deux, de créer un chat cyclope. C’est une image familière, un chat, mais avec une touche d’originalité qui saurait capter l’attention.  Ainsi, étant un Chat Cyclope en forme de Cube, trois mots commençant par C, nous l’avons appelé C³.

Le tour de magie

Vous savez à présent à quoi ressemble le robot, mais vous vous demandez peut-être ce qu’il doit faire. Nous avons cherché plusieurs tours sur internet et avons choisi de réaliser celui-ci (à 3:38 dans la vidéo): https://youtu.be/XqmcqWW_JRg?t=218

L’idée est basiquement, avec deux pièces et un verre, de faire semblant de faire passer une des pièces à travers le verre alors qu’en réalité on a fait tomber la deuxième dedans et caché la première.

Illustration du tour de magie

Pour faire faire ce tour à un robot il y a évidemment de nombreuses étapes à modifier car il ne sera jamais aussi agile qu’un humain. Il faut prendre en compte le fait que chaque axe dans lequel le robot devra faire un mouvement représente un moteur différent que nous devrons programmer plus tard. Il faut donc limiter les mouvements nécessaires au maximum.

Pour réaliser le tour nous avons un bras qui tient le verre et une pièce visible posée en dessous (image 1). Au moment où on démarre, le bras tapera le sol au niveau de la pièce, la cachant par la même occasion. La plateforme sur laquelle se trouve la pièce tournera alors, cachant celle-ci (image 2). Au même moment, le bras qui tient le verre fera tomber la deuxième pièce qui était cachée à l’intérieur depuis le début (image 3).

La modélisation et l’impression

Nous avons passé de nombreuses heures à modéliser le robot sur le logiciel SolidWorks. Chaque partie a dû être modélisée séparément en imaginant comment elle serait attachée aux autres autours d’elle. 

Nous étions des débutants complets pour tout ce qui concerne des problèmes mécaniques en termes de création, nous avons donc trouvé des inspirations dans ce que nous connaissons : des objets du quotidien. Nous pouvons citer notamment le bouchon d’une bouteille d’eau classique duquel nous nous sommes inspirés.

En tout nous avons 13 pièces complexes et différentes que nous avons entièrement imaginé et créé.

L’ensemble de nos pièces modélisées

C’est à partir de cette partie en réalité que nous avons commencé à avoir des problèmes. En effet, mis à part les difficultés de la modélisation en elle-même, il y a eu des difficultés d’impression. La partie principale, le gros cube que vous voyez sur la photo au-dessus, ne pouvait pas être imprimé car il demandait plus d’une bobine de plastique (presque trois), ce que l’imprimante ne peut pas faire. Sans ce cube, la majorité des pièces créées n’avait pas d’utilité et nous n’avons donc imprimé que les parties composants le bras et la plaque sur laquelle se fait le tour.

La programmation : Raspberry Pi, écran et moteurs

Cette partie est la dernière du projet et n’est donc pas terminée. Nous avons fait face à de nombreux problèmes que nous ne pouvions pas régler simplement ici.

Nous avons choisi pour le projet de travailler avec une carte Raspberry Pi. Pour ceux qui ne le savent pas, c’est, dans l’idée, un petit ordinateur qu’on peut programmer pour contrôler tout notre système.

Photo d’une Raspberry Pi 3

Après avoir mis un système d’exploitation sur la carte (un équivalent à Windows ou linux mais pour Raspberry), nous avons essayé de faire fonctionner l’écran. Nous pouvons l’allumer sans problème mais nous avons compris trop tard qu’il fallait une carte SD très précise pour faire fonctionner les animations dessus. Il fallait une carte de moins de 2GO, déjà très dure à trouver, mais aussi qu’elle soit compatible avec l’écran ce qui n’est pas le cas de toutes les cartes SD. Malgré que tout soit prêt, nous n’avons donc pas pu faire fonctionner l’écran.

Photo de l’écran

Nous avons programmé les moteurs en python, langage que nous avions déjà utilisé donc il n’y avait pas trop de problèmes. Nous avons trouvé un modèle de code sur internet pour faire fonctionner des moteurs en python avec une Raspberry et avons donc modifié celui-ci pour réussir à faire tourner les moteurs. <image moteurs/code>

Bilan

 Au final, notre projet n’est pas terminé mais nous avons quand même gagné des compétences utiles grâce à celui-ci, notamment en mécanique et électronique, où nous avons pu pratiquer les domaines comme on ne le fait pas normalement en cours. Nous sommes tout de même satisfaits par certains aspects, comme l’animation où, malgré certains problèmes, les modèles que nous avons pu produire. 

Même si nous sommes déçus du résultat, nous espérons que, si ce projet est repris l’année prochaine, il pourra être fini et perfectionner grâce à ce qu’on a pu faire cette année.

Nous vous remercions de votre lecture et espérons que vous avez trouvé notre projet intéressant.

Manon Boursicot et Anthonin Devas

Images utilisées dans cet article:

Moteur: https://www.robotshop.com/ca/fr/servomoteur-a-rotation-continu-parallax-futaba.html

Écran: https://4dsystems.com.au/products/4d-intelligent-hmi-display-modules/raspberry-pi-compatible-kits/gen4-ulcd-70dt-pi

Raspberry: https://www.desertcart.ae/products/59401529-raspberry-pi-3-model-b

Amélioration de la machine de recyclage de matériaux pour impression 3D

Bonjour à toutes et à tous !

    Nous sommes deux étudiants en deuxième année de cycle préparatoire d’école d’ingénieur, Alan et Romane. Nous avions pour projet d’améliorer la machine de recyclage de matériaux pour impression 3D.

Contexte

    La machine de recyclage de matériaux pour impression 3D existait déjà au début de notre projet. En effet, il y a trois ans, deux élèves espagnols se sont lancés dans la création de cette machine composée de plusieurs éléments :
    • l’extrudeuse : permettant de chauffer les granulés et de faire sortir du fil
    • le système de refroidissement : constitué d’un ventilateur qui refroidit le fil dès sa sortie
    • le système de tirage : tire sur le fil
    • le système de bobinage : permettant d’obtenir une bobine de fil pour tout types d’imprimante 3D
    • le système d’alimentation : permettant de mettre en fonctionnement les deux moteurs
    • le système de mesure : permettant de mesurer le diamètre du fil instantanément

201236821_2778911395754904_3866145828310538189_n

Photo de la machine de recyclage de matériaux pour impression 3D

Objectifs :

    Nous avions pour objectif de vérifier le fonctionnement de la machine et de faire les réparations nécessaires dans un premier temps. Ensuite nous devions refaire le support du capteur pour avoir une meilleure précision sur les valeurs affichées. Pour finir, nous devions faire des modifications sur le code de la carte Arduino Uno afin d’obtenir un affichage plus précis et lisible.

Réparations :

    La machine n’ayant pas fonctionné pendant trois ans, nous avons dû faire quelques réparations dès la première mise en route. Nous avons branché plusieurs fils ainsi que fait quelques raccordements. Nous devions coller différentes pièces qui s’étaient désolidarisées avec le temps ou encore serrer des vis. Nous avons donc dû faire attention à chaque élément de la machine dès la mise en route pour ne pas passer à côté d’une modifications ou réparations à faire.

Support Capteur :

    La création d’un support pour le capteur est la partie la plus importante de notre projet. En effet, il fallait absolument créer un nouveau support car l’ancien, que nous avions en notre possession, laissait entrer beaucoup de lumières.
    Il faut savoir que notre capteur fonctionne avec une LED de couleur rouge. Dès que le fil passe entre la lumière rouge et le capteur, il y a une ombre qui se forme sur le capteur. c’est grâce à cette ombre que le capteur peut récupérer une mesure.
    Cependant, si le capteur est sujet à des perturbations telles que la lumière, il ne pourra pas fonctionner correctement et donner des résultats précis.

    Nous nous sommes documentés sur les différentes formes que peut avoir un support capteur. Nous sommes tombés sur le site suivant :

    Il nous a permis de concevoir un support de capteur qui réduit considérablement l’exposition de celui-ci à la lumière.

    Nous avons décidé de réaliser notre support de capteur en trois parties :

    • 4 pieds
    • pièce du dessous avec la place du capteur
    • pièce du dessus avec la place de la LED rouge

vu pièce

Ensemble des pièces qui constituent notre support Capteur

    Après plusieurs impressions et réglages nous avons obtenu le support de Capteur que nous voulions.

201003828_1490306371330896_6928535255193889305_n

Photo du support de Capteur final

Carte Arduino Uno :

    Nous avons fini notre projet en nous occupant de la carte Arduino Uno. Notre but était d’afficher la valeur du diamètre mesuré de façon plus claire. Pour cela nous avons étudié le code de la carte Arduino Uno. Après plusieurs recherches sur le site internet Arduino et à partir de vidéos, nous avons trouvé le problème. Il fallait enlever cette ligne du code pour que l’affichage soit directement plus clair :

ligne de trop arduino

Conclusion :

    Pour conclure nous avons réussi à refaire fonctionner cette machine de recyclage de matériaux pour impression 3D ainsi qu’à l’améliorer grâce au nouveau support de capteur et une modification du code existant afin d’obtenir un affichage du diamètre plus clair et lisible.

Conception et optimisation d’un robot DiWheel

Robot DiWheel 2021

Robot DiWheel 2021

Bonjour à toutes et à tous
Nous sommes heureux de vous présenter notre projet, le robot DiWheel. Notre robot se base sur une structure de LEGO, mais beaucoup de travail technique a été nécessaire pour mener ce passionnant projet à bien.
Si cela vous intéresse, n’hésitez pas, et cliquez sur ce lien pour en savoir plus !
-> Lire l’article complet <-