La boite à histoire

Notre projet s’intitule “boîte à histoires”. Une boîte à histoire est un objet destiné aux enfants qui raconte des histoires préenregistrées adaptées pour le développement de l’enfant. Il existe toutes sortes de boîtes à histoires sur le marché, l’objectif du projet est de concevoir de A à Z une boîte à histoire à prix équivalent de ce qui existe sur le marché.  En plus, nous devions trouver un moyen d’ajouter facilement des histoires avec un câble USB.

Durant les 100 heures de projets, nous avons découvert le monde de l’électronique, nous avons pu faire de la soudure, de la programmation, de la recherche d’information sur des composants, une prise en main de logiciels comme EAGLE, de la conception CAO…

Déroulement du projet

Le projet s’est déroulé en plusieurs étapes pour arriver à la construction finale de la boîte à histoire. La première est la recherche des composants dont nous avions besoin pour faire fonctionner la boîte et la découverte de l’Arduino.

1) Recherche des composants de la boite et la découverte de l’Arduino

Tout d’abord, comme nous partions de zéro, il fallait faire des recherches sur les composants qui nous seraient utiles pour la conception de la boite à histoire. Pour commencer, nous avons fait des recherches et testé des shields que nous avions déjà à l’école. Ensuite, nous avons commandé le matériel qui nous manquait pour construire la boite à histoire. Nous avons testé tout les shields séparément avant de les combiner ensemble.

C’était assez fastidieux car nous ne savions même pas si c’était possible de fabriquer une boîte à histoire avec Arduino.

Carte Arduino Uno

Au départ, nous avons essayé un écran de 128*128 pixel.  Il allait servir d’écran d’information pour la sélection des histoires. Nous avons réussi à créer une interface correcte pour l’Arduino. Nous lui avons aussi créé un logo pause pour qu’il change en fonction d’un bouton.

écran avec l’interface graphique
écran fixé à la boite
DFplayer

Ensuite, nous sommes passés sur la programmation du son. Nous avons testé au départ un shield  “Music Maker” qui contenait une carte SD. Le son marchait bien, cependant nous n’avons trouvé aucun moyen d’accéder à la carte par USB. Cela nous a obligé à changer des composants et d’utiliser un DFplayer, un module mp3 pour Arduino. Ce qui nous intéressait dans le DFplayer était sa connexion USB+ et USB-. Cela nous a permis d’accéder facilement à la carte SD sans l’enlever.

Après nous avons enchainé par à la programmation des boutons. Nous avions besoin de 5 boutons :  

Boutons types pour Arduino
  • un bouton avancer et un bouton reculer, ils servent à changer de musique. Le numéro de la musique sera modifié après l’appui sur un des 2 boutons.
  • un bouton pause, un appui met la musique en pause et l’écran change son affichage. Un second appui relance la musique et change l’interface de l’écran.
  • un bouton qui augmente le son et un qui le baisse, ces deux boutons sont tous les 2 responsables du volume. Nous aurions pu utiliser un seul bouton rotatif.

Une fois cette étape de test terminée, nous avons combiné tous les programmes ensemble pour en former un seul (dont on vous épargnera le contenu) . Nous avons utilisé un breadboard pour placer les boutons et le DFplayer. La connexion USB pour modifier les fichiers à l’intérieur de la carte SIM du DFplayer était faite grâce à une câble USB dénudé. C’est à ce moment-là que nous avons pu voir si le projet était faisable sur Arduino. Étonnement, la connexion par USB fonctionnait, et les boutons aussi.

2) Impression du shield Arduino

La première étape était terminée, la seconde était de transformer l’amas de fils présent sur le breadboard en une carte électronique. Nous avons utilisé le logiciel EAGLE pour créer la carte sur mesure.  

Pour imprimer la carte, il faut tout d’abord importer les composants et faire leurs liaisons sur la partie “shematic” d’EAGLE. C’est assez long car il faut retrouver la référence de chaque composant que l’on veut ajouter

Schématique de la carte

Une fois la partie “shématic” faite, nous passons à la partie “ bord” du logiciel. Cette partie a pour objectif de reproduire les mêmes liaisons entre les composants que celles présente lors de l’impression. Nous ne pouvons pas croiser les fils de la carte contrairement à la partie “shématic”.

board désignée sur Arduino
board mini carte

Nous avons eu besoin de faire 2 prototypes pour que la carte marche entièrement. Avec cette carte, nous avons aussi imprimé une petite carte qui servira d’entrée USB. Le VCC, le GND, le USB+ et USB- seront récupérés par des borniers à vis au bout de la petite carte.

3) La batterie

La dernière étape pour avoir un objet fonctionnel était l’ajout de la batterie. La boîte à histoire doit être transportable, il nous faut donc une batterie rechargeable pour assurer son  fonctionnement. Nous avons utilisé un shield arduino batterie ainsi qu’une batterie de 3.7 volt et de 1.2 Ampères. La batterie est rechargée par un connecteur micro USB.

Shield batterie Arduino

3) CAO

Nous avons ensuite fabriqué un boîtier pour la boîte à histoire. Il nous restait peu de temps pour faire un design stylisé, nous avons donc fait un design très simple. Le boutons présent sur le shield imprimé sont superposés par des surboutons.

Coté sortie USB B et son
Coté sortie USB et son

Conclusion

Nous avons apprécié faire ce projet, c’était très enrichissant. Nous avons découvert l’univers de l’électronique à notre façon. Cette période de projet était très intéressante pour nous. Être en autonomie nous a appris à nous débrouiller et à apprendre à notre rythme. Nous avons pu progresser par nos propres expériences, ce qui est encore plus gratifiant. De plus, ce projet a joué un rôle important pour notre avenir. Nous voulons tous les 2 travailler dans un milieu proche de l’électronique ou de l’informatique. 

Nous sommes satisfait de notre travail, la boite est fonctionnelle. Il reste toujours beaucoup d’éléments à perfectionner. Avec plus de temps, nous aurions pu par exemple ajouter un mode veille ou créer un meilleur visuel. Pour plus d’information, lien vers le GitLab Angers.

Boîte à histoire
En partant de la droite, Adrien et Maxime

Merci d’avoir lu jusqu’au bout !

Adrien Morille et Maxime Lambert

Projet PEIP 2A – Robot 5R

La PlotClock

Bonjour à tous !


L’objectif de ce projet est de réaliser une Plotclock où le robot a pour tâche d’écrire l’heure en temps réel. Ce robot fonctionne avec deux bras, composés tous les deux de deux avant-bras, reliés entre eux au niveau de la tête d’écriture. Les deux bras sont dirigés de manière à dessiner l’heure sur l’écran à l’aide de servomoteurs.

Notre robot est équipé, en tête d’écriture, d’une LED UV pour écrire l’heure sur l’écran phosphorescent. Après que le robot est affiché l’heure grâce à la LED UV, elle s’efface toute seule, avec le temps.


Voici quelques étapes de la conception de notre robot en passant par la CAO, la programmation, l’électronique et bien sûr quelques problèmes rencontrés.


Notre projet a débuté par une phase de recherche

Avant de nous lancer dans la conception de notre robot, nous avons cherché à comprendre comment un robot 5R fonctionne. Pour cela, nous avons fait de nombreuses recherches sur la cinématique inverse, les angles que les servomoteurs doivent réaliser afin que la tête d’impression aille aux coordonnées cartésiennes que nous souhaitons. Pour cela nous avons fait des simulations avec les servomoteurs sur TinkerCAD pour comprendre comment manipuler les servomoteurs et comment fixer les angles afin de pouvoir maîtriser les mouvements des bras.

Simulation des servomoteurs avec potentiomètres à l’aide du logiciel TinkerCAD

Après ces essais et de nombreux schémas, nous sommes parvenus à établir trois fonctions qui seront utiles pour déplacer les bras aux coordonnées souhaitées :

//consine formula function
double cosineRule(double a, double b, double c) {
    return acos((sq(a)+sq(c)-sq(b))/(2*a*c));
}

//distance computation macro 
#define dist(x,y) sqrt(sq(x)+sq(y))

//atan2 formula macro 
#define angle(x,y) atan2(y,x)


Conception de notre robot sur SolidWorks

La deuxième étape est de concevoir notre robot sur Solidworks. Nous avons modélisé les bras, les avant-bras, le socle et son couvercle. Le socle, le robot en lui-même, contient les servomoteurs ainsi que le ruban phosphorescent qui a été placé dessus. Lors de la modélisation des bras, nous avons fait face à un problème majeur. En effet, lors de la première impression, les bras et les avant-bras étaient de la même taille, en plus d’être trop long. En faisant des essais avec les servomoteurs, nous nous sommes rendus compte qu’à cause de leur taille, les bras allaient trop facilement dans leur position limite. C’est-à-dire comme le montre l’image suivante :

Voici quelques vues de nos bras, de notre socle et enfin de l’assembage de notre robot avant l’impression, après avoir rectifier le problème rencontré :

Modélisation du bras 1
Modélisation du bras 2

Ce bras ci-dessus (bras 2) est un peu plus épais que les autres afin qu’on puisse garder la tête d’écriture parfaitement parallèle par rapport à l’écran de ruban.

Modélisation du bras 4 (avec la tête d’écriture)
Vidéo de l’impression 3D des bras du robot
Modélisation du socle
Vidéo de l’impression 3D du socle de notre robot

Après avoir modélisé chaque pièce une par une, nous les avons assemblées afin de mieux visualiser notre robot final.

Modélisation de l’assemblage complet

Assemblage & programmation de notre robot

Ensuite, une fois l’impression terminée, les bras réimprimés plus petits, nous avons assemblé chaque composant entre eux, collé le ruban adhésif phosphorescent sur le robot, fixé les bras sur les servomoteurs. Après avoir reçu tous nos composants dont le module horloge afin d’écrire l’heure correctement, nous avons soudés et connectés les câbles sur la carte Arduino.

Voici une image de notre robot avec tous les câbles assemblés. Sur l’image de droite, vous pouvez voir un schéma de l’assemblage sur TinkerCad afin de mieux visualiser les branchements de chaque composant.

À partir de ce moment-là, nous devions essayer le programme que nous avions développé en même temps que la modélisation et l’impression. Lors du lancement de notre programme, le robot affichait l’heure mais à l’envers c’est-à-dire en mode miroir (comme vous pouvez le voir sur la vidéo ci-contre). Nous avions donc un problème avec notre repère des coordonnées. En effet, en faisant de multiples tests, nous avons compris que le sens de l’axe des x était inversé.

Après avoir identifié le problème, nous devions le corriger dans notre programme, inverser le sens des chiffres, mais aussi inverser le sens de l’écriture. Nous avons donc modifié les coordonnées de chaque chiffre et nous avons repensé leur position sur l’écran d’écriture. Dû au fait d’une calibration non parfaite, des petits réglages ont été effectués pour que les chiffres soient droits. Prenons l’exemple du chiffre 2 :

Avant l’ajustement :

 case 2: 
            digitStart(0,3/4);
            digitArc(1/2,3/4, 1/2,1/4, 1/2, -1/8);
            digitArc(1,0, 1,1/2, 3/8, 1/2);
            digitMove(1,0);
            break;

Après l’ajustement

case 2: 
            digitStart(1,3/4);
            digitArc(1/2,3/4, -1/2,1/4, 1/2, -1/8);
            digitArc(0,0, -1, 1/2, 3/8, 1/2);
            digitMove(0,1/4);
            break; 

Pour finir, pour que notre robot soit autonome, nous avons ajouté une batterie. De plus, nous voulions mettre un interrupteur afin qu’on puisse éteindre l’alimentation de notre carte Arduino pour que la batterie dure plus longtemps. Nous nous sommes vites rendus compte que notre module horloge devait être alimenté en continue pour qu’il écrive l’heure en temps réel. Notre projet de mettre un interrupteur n’était donc pas possible avec ce module horloge. Il existe d’autres modules horloge qui possèdent une pile intégrée afin qu’ils restent constamment alimenter pour qu’ils ne perdent pas l’heure. Nous avons donc décidé de mettre des piles rechargeables 6V de 1600mA pour éviter qu’elles ne se déchargent trop vite.


Bilan & Critiques

Ce projet a été très enrichissant et intéressant. Nous avons pu mettre à profit de nombreuses compétences notamment en conception mais aussi en électronique, en électricité et en programmation. La partie la plus dure a été la programmation avec un langage qui était nouveau pour nous.

De plus, nous avons appris à être autonome et prendre des décisions dans un projet de A à Z. Savoir se débrouiller face à différents problèmes et ne pas abandonner sont aussi deux points importants dans un projet. De plus, le travail d’équipe est une compétence essentielle pour le bon déroulement d’un projet. Nous avons donc dû savoir s’écouter entre coéquipier, exprimer chacun ses idées. Nous n’étions pas forcément toujours d’accord sur certaines choses mais en discutant ensemble, nous trouvions toujours un compromis.

Notre robot n’est qu’un prototype, il y a donc certaines choses à améliorer comme l’alimentation de la carte Arduino ou bien le module horloge. De plus, nous pourrions développer davantage notre programme pour qu’il est différente fonctionnalité comme écrire la date ou dessiner quelque chose demandée par l’utilisateur. Pour aller plus loin, développer une application pour le diriger depuis son portable pourrait être intéressant afin d’avoir de multiples fonctionnalités.

Nous tenons à remercier notre référent, M. LAGRANGE, pour nous avoir aider et guider tout au long de ce projet.

Merci pour votre lecture !!!

Mohamad DEIRI / Méline TARLEVE

Amélioration de la machine de recyclage de matériaux pour impression 3D

Bonjour à toutes et à tous !

    Nous sommes deux étudiants en deuxième année de cycle préparatoire d’école d’ingénieur, Alan et Romane. Nous avions pour projet d’améliorer la machine de recyclage de matériaux pour impression 3D.

Contexte

    La machine de recyclage de matériaux pour impression 3D existait déjà au début de notre projet. En effet, il y a trois ans, deux élèves espagnols se sont lancés dans la création de cette machine composée de plusieurs éléments :
    • l’extrudeuse : permettant de chauffer les granulés et de faire sortir du fil
    • le système de refroidissement : constitué d’un ventilateur qui refroidit le fil dès sa sortie
    • le système de tirage : tire sur le fil
    • le système de bobinage : permettant d’obtenir une bobine de fil pour tout types d’imprimante 3D
    • le système d’alimentation : permettant de mettre en fonctionnement les deux moteurs
    • le système de mesure : permettant de mesurer le diamètre du fil instantanément

201236821_2778911395754904_3866145828310538189_n

Photo de la machine de recyclage de matériaux pour impression 3D

Objectifs :

    Nous avions pour objectif de vérifier le fonctionnement de la machine et de faire les réparations nécessaires dans un premier temps. Ensuite nous devions refaire le support du capteur pour avoir une meilleure précision sur les valeurs affichées. Pour finir, nous devions faire des modifications sur le code de la carte Arduino Uno afin d’obtenir un affichage plus précis et lisible.

Réparations :

    La machine n’ayant pas fonctionné pendant trois ans, nous avons dû faire quelques réparations dès la première mise en route. Nous avons branché plusieurs fils ainsi que fait quelques raccordements. Nous devions coller différentes pièces qui s’étaient désolidarisées avec le temps ou encore serrer des vis. Nous avons donc dû faire attention à chaque élément de la machine dès la mise en route pour ne pas passer à côté d’une modifications ou réparations à faire.

Support Capteur :

    La création d’un support pour le capteur est la partie la plus importante de notre projet. En effet, il fallait absolument créer un nouveau support car l’ancien, que nous avions en notre possession, laissait entrer beaucoup de lumières.
    Il faut savoir que notre capteur fonctionne avec une LED de couleur rouge. Dès que le fil passe entre la lumière rouge et le capteur, il y a une ombre qui se forme sur le capteur. c’est grâce à cette ombre que le capteur peut récupérer une mesure.
    Cependant, si le capteur est sujet à des perturbations telles que la lumière, il ne pourra pas fonctionner correctement et donner des résultats précis.

    Nous nous sommes documentés sur les différentes formes que peut avoir un support capteur. Nous sommes tombés sur le site suivant :

    Il nous a permis de concevoir un support de capteur qui réduit considérablement l’exposition de celui-ci à la lumière.

    Nous avons décidé de réaliser notre support de capteur en trois parties :

    • 4 pieds
    • pièce du dessous avec la place du capteur
    • pièce du dessus avec la place de la LED rouge

vu pièce

Ensemble des pièces qui constituent notre support Capteur

    Après plusieurs impressions et réglages nous avons obtenu le support de Capteur que nous voulions.

201003828_1490306371330896_6928535255193889305_n

Photo du support de Capteur final

Carte Arduino Uno :

    Nous avons fini notre projet en nous occupant de la carte Arduino Uno. Notre but était d’afficher la valeur du diamètre mesuré de façon plus claire. Pour cela nous avons étudié le code de la carte Arduino Uno. Après plusieurs recherches sur le site internet Arduino et à partir de vidéos, nous avons trouvé le problème. Il fallait enlever cette ligne du code pour que l’affichage soit directement plus clair :

ligne de trop arduino

Conclusion :

    Pour conclure nous avons réussi à refaire fonctionner cette machine de recyclage de matériaux pour impression 3D ainsi qu’à l’améliorer grâce au nouveau support de capteur et une modification du code existant afin d’obtenir un affichage du diamètre plus clair et lisible.

Compteur binaire motorisé

Salut les polypotes !

    Nous sommes Maëlys DUBOIS et Thomas BLAIN, étudiants en deuxième année de cycle préparatoire intégré à Polytech Angers. Pour notre quatrième semestre, nous sommes amenés à mettre en œuvre un projet, de A à Z. Notre objectif est de concevoir puis construire une maquette de démonstration (salons, forum, etc.) d’un compteur binaire motorisé, que l’on pourra facilement déplacer. Nous avons choisi ce projet car il nécessite des compétences en mécanique/conception et en informatique/électronique, domaines sur lesquels nous sommes complémentaires.

I. Présentation du projet

    Le système est composé de 8 pièces double face sur lesquelles il est écrit 0 d’un côté et 1 de l’autre, les pièces sont suspendues à une tige et la première est reliée à un moteur pas à pas qui, quand il tourne, entraîne la première pièce, qui peut ensuite, selon si elle affiche 0 ou 1, entraîner la pièce suivante… Cette disposition permet d’afficher les 255 premiers nombres en binaire dans l’ordre.
    Le cahier des charges du projet était très ouvert ; il demandait uniquement de concevoir le compteur et de le faire fonctionner électroniquement. Nous étions totalement libres sur les options de fonctionnement, le nombre de bits, etc. Les contraintes comprenaient la facilité de transport (poids, taille) et la création d’options en électronique à partir de matériaux simples.

    Vous pouvez voir ci-dessous le principe du système :

    Valeur 0 en binaire

    Valeur 0 en binaire

    Valeur 1 en binaire

    Valeur 1 en binaire

    Valeur 2 en binaire

    Valeur 2 en binaire

    Notre compteur comporte de nombreuses pièces, dont une partie imprimée en 3D, d’autres sont en dibond (plaque plastique entourée de plaques d’aluminium), et d’autres sont en bois.
    Notre objectif avec ce système est de pouvoir retranscrire au grand public le principe du langage binaire, tout en pouvant manipuler un système facile d’utilisation.
    Le principe de base est que vous choisissiez un nombre quelconque pour que le compteur vous affiche son équivalent en binaire.
    Vous pouvez expérimenter 3 modes de fonctionnement différents et indépendants parmi les suivants :
    – Incrémenter un à un grâce à un bouton poussoir. (incrémenter = +1)
    – Incrémenter en continu grâce à un bouton poussoir.
    – Choix du nombre à afficher (entre 0 et 255) en sélectionnant le chiffre souhaité avec un encodeur rotatif (avec bouton) qui commande un afficheur.

II. Travail réalisé

    Nous pouvons distinguer deux parties concernant la mise en forme de notre projet tutoré. Il est composé d’une partie informatique / électronique ainsi que d’une partie mécanique / conception / impression 3D.
    Nous avons débuté notre projet par une phase de discussion sur la conception de notre compteur en général et ses caractéristiques. Nous avons fait un premier choix non définitif concernant les fonctionnalités disponibles et leur application, la taille, le nombre de plaquettes numérotées (soit le nombre de bits), le type de moteur et son mode de transmission, le type de carte de commande de notre compteur, etc.

    Nous nous sommes par la suite lancés dans le dimensionnement des pièces pour que l’ensemble puisse rentrer dans notre valise et dans les essais de composants électroniques dont nous pourrions avoir besoin.
    Après avoir dimensionné les pièces sur le logiciel FUSION 360, nous nous sommes rendu compte que certaines pièces ne pouvaient pas être imprimés en 3D, étant donné leur taille trop importante.

    Modélisation plaquette numérotée sur Fusion360.

    Modélisation plaquette numérotée sur Fusion360.

    La partie électronique du système est dirigée par une carte de commande Arduino UNO. Nous avons pu tester et configurer les fonctionnalités de comptage sur les afficheurs après avoir appris à utiliser le langage Arduino et son logiciel. Nous avons commencé à tester et programmer indépendamment chaque élément électronique dont nous pourrions avoir besoin pour ensuite commencer à les lier ensemble ou améliorer leur fonctionnement.

    Système électronique sous le fond de commande.

    Système électronique sous le fond de commande.

    Système électronique "partie commande".

    Système électronique “partie commande”.

    Nous sommes passés par des phases de recherche de composants que nous ne pouvons pas forcément concevoir en impression 3D.
    Nous avons recherché quel moteur pas à pas serait le plus à même de convenir à notre système, quelles rondelles utiliser pour séparer les plaquettes, quelles charnières utiliser pour basculer notre compteur, quel système poulie-courroie utiliser pour la transmission.

    Notre moteur "pas à pas" et son système de transmission "poulies-courroie".

    Notre moteur “pas à pas” et son système de transmission “poulies-courroie”.

    Étant donné que nous nous sommes rendu compte lorsque nous voulions faire l’impression 3D de nos fonds et de nos potences que ce n’était pas possible pour celles-ci, nous avons opté pour des plaques de dibond pour les fond ainsi que du bois pour les pieds servant à soutenir nos fonds et les blocs de maintien des potences

    Pour finir, nous avons enfin pu procéder à l’assemblage de notre compteur binaire et le relier à son système de commande.

III. problèmes rencontrés

    Concernant la partie mécanique, le premier problème apparu est le dimensionnement finalement peu pertinent autour d’une potence de maintien, afin d’accueillir notre servomoteur, pour que l’on se rende compte qu’un moteur pas à pas serait plus pertinent pour notre système. A la suite de cela, nous avons redimensionné et modifié la potence de maintien censée accueillir le servomoteur, pour l’accueil du moteur pas à pas choisi. Cependant, après discussion avec notre professeur encadrant, il est ressorti qu’il serait préférable d’inclure un système poulie-courroie pour la transmission de notre moteur au compteur. Le moteur ne doit donc plus se trouver sur l’axe de la tige de maintien des plaquettes, ce qui rend le dimensionnement d’un espace moteur dans la potence inutile.
    De plus, nous avons dû changer à quelques reprises les dimensions de nos pièces, mais cela provient plus d’une évolution de notre projet que d’un problème réel.

    Ensuite, nous avons voulu commencer l’impression test de nos pièces en 3D mais nous avons attendu 2 mois sans que cela ne puisse être possible. Les files d’attente étaient très longues et toutes les imprimantes 3D étaient HS. Jusqu’à la fin de notre projet, nous n’avons donc jamais pu imprimer nos pièces. De ce fait, nous avons dû chercher à contacter une connaissance possédant une imprimante 3D et qui pourrait nous aider pour la conception de nos pièces finales.

    Concernant la partie électronique, c’est notre manque de connaissance qui nous a causé le plus de tort. Nous sommes donc assez limités lorsque des problèmes surviennent. Lorsque les programmes ne fonctionnent pas comme nous l’attendions, cela peut nous prendre beaucoup de temps afin de résoudre le problème.
    Ensuite, nous avons eu quelques soucis avec le logiciel Arduino. Nous avions un problème de bibliothèque, qui ne fonctionnait pas sous linux. Il a donc fallu passer sous Windows, mais ça n’a pas fonctionné dès le début. C’est en passant sur le logiciel Arduino en ligne que notre programme a pu fonctionner normalement.
    Il a aussi fallu adapter, tout au long du projet, les options du compteur au fur et à mesure des essais des composants. Il y avait des composants auxquels nous n’avions pas pensé au préalable, d’autres qui étaient finalement trop compliqués à utiliser, etc.

IV. Conclusion

    Pour conclure, nous sommes plutôt satisfaits du résultat final par rapport à notre idée initiale du projet. Notre système fonctionne très bien dans les grandes lignes.
    Il arrive de temps en temps que les plaquettes poussantes ne tombent pas parfaitement à l’emplacement qui leur est dédiée et les potences de maintien ont un léger jeu avec les blocs de support, ce qui pose un léger problème de tension de notre courroie de transmission. Exceptés ces deux points, le compteur binaire est fonctionnel, même s’il pourrait être amélioré. Nous pourrions régler ces problèmes de potence et de pièces, ajouter un décompte sur le compteur ou encore améliorer l’esthétique du projet.
    La réalisation de ce projet a été pour nous très instructive. Ce dernier s’est reposé sur un travail coopératif où nous avons beaucoup appris. Nous avons fait face à différentes problématiques, que nous avons su résoudre.

    Voici donc le résultat de notre compteur binaire :

    Position "utilisation du système"

    Position “utilisation du système”

    Position "repos/transport"

    Position “repos/transport”

    Vous pouvez consulter notre compte rendu qui vous expliquera plus en détail le déroulé du projet ici :

    Merci de votre attention !

    Maëlys et Thomas, PeiP 2A, Polytech Angers

Projet voiture RC roues 180°

Introduction :

Bonjour à tous, nous sommes Tony Barbier, Jean Nobel et Errol Sistach, tous trois étudiants en deuxième année à Polytech Angers.
Dans le cadre de notre formation, nous sommes amenés à réaliser un projet. Le notre était la conception d’une voiture radiocommandée dont la particularité est la rotation de ses roues sur 180°.

Nous avons choisi ce projet car il est complet, il nous a permis de toucher à plusieurs domaines différents : la CAO, la mécanique, la programmation et l’électronique.
Les différentes étapes de notre projet ont été la modélisation, la programmation et finalement l’usinage de notre voiture.

Travail réalisé :

Présentation de la modélisation :

Châssis
Tout d’abord le châssis. Sur les parties gauches et droites, l’enlèvement de matière sur l’axe horizontal est fait pour laisser passer les servomoteurs. Les deux renfoncements moins profonds sont prévus pour les boulons de serrage lorsque les roues seront soit à 90° à droite soit 90° à gauche.
Les trous sur les parties haute et basse sont faits pour laisser passer les roues quand elles seront complètement tournées.

Essieu avant
Voici l’essieu avant. Les deux essieux sont sensiblement identiques, la seule différence est qu’il n’y a pas de motoréducteurs (en jaune) à l’arrière.
Chaque essieu est composé d’une barre et de deux équerres. Pour pouvoir tourner, le palonnier (l’hélice) du servomoteur est relié à la barre, les essieux seront alors dirigés à gauche ou à droite selon la direction où l’on veut aller.

essieu vue dessus 1essieu vu dessus 2

Pour finir cette partie, les roues arrières seront maintenues grâce à des carrés de fixation. Pour les roues avant, les motoréducteurs servent aussi d’arbres. carré de fixationfixation motoréducteurs

Réception et test des composants :

Arduinomotoréducteurservomoteur

Après avoir réceptionné ces composants, nous avons branché les servomoteurs et les motoréducteurs à la carte Arduino, et nous avons tout alimenté avec une batterie pour vérifier leur bon état de fonctionnement.

Programmation :

Grâce aux bibliothèques AFMotor, Servo et SoftwareSerial il a été très facile de créer un programme pour piloter les moteurs. Il suffisait d’indiquer les pins sur lesquels les moteurs étaient fixés puis d’utiliser les fonctions incluses dans les bibliothèques pour les mettre en mouvement.

téléphone
Grâce au site Mit App Inventor nous avons créé une application Bluetooth Android qui communique avec le module Bluetooth HC-06 et donc pilote la voiture. L’application est constituée d’une interface utilisateur pour se connecter au module Bluetooth puis faire avancer/reculer et tourner la voiture. La partie programmation est intuitive et se fait à l’aide de blocs. Lorsque l’utilisateur appuie sur un bouton, l’application envoie un ordre (par exemple « l » en ASCII pour « left ») et le module Bluetooth récupère cet ordre pour le transmettre à la voiture.

Mais la façon la plus simple de piloter la voiture reste celle sur ordinateur en utilisant le port USB de l’Arduino. Nous avons donc utilisé l’IDE Processing pour développer un programme permettant à l’utilisateur de communiquer avec la carte par l’intermédiaire d’un port USB.

Usinage :

Notre voiture est faite à partir d’une plaque en bois de 5mm d’épaisseur. Nous avons utilisé la fraiseuse du Fablab de Polytech Angers pour usiner chacune des pièces nécessaires à la réalisation de la voiture.

Nous avons ensuite montés les pièces entres elles : usinage 1

Puis nous avons soudé des fils électriques entre les motoréducteurs et la carte Arduino. Et pour finir, nous avons relié le palonnier de chaque servomoteur aux essieux respectifs.

Conclusion :

Ce projet nous aura été très formateur. C’était vraiment intéressant de se tourner vers quelque chose de plus concret.
C’est toujours une bonne expérience de travailler en équipe, d’autant plus lorsque c’est un projet comme cela.
Malheureusement, notre voiture était loin d’être parfaite mais nous sommes quand même fier du travail fourni et du résultat.

Merci à M. Verron pour toute son aide.

Tony Barbier, Jean Nobel, Errol Sistach.

Compteur binaire motorisé

Nous sommes un groupe de 3 étudiants de PEIP 2A constitué de Mattéo NAIS, Emylien PAUTONNIER et Hugues THEZELAIS. Dans le cadre des projets tutorés nous avons travaillé sur un projet de compteur binaire motorisé tenant dans une mallette pour être facilement transportable sur les différents salons et forums.
Ce projet est un mélange d’électronique, de mécanique et de CAO dans lequel chacun pouvait exprimer ses qualités respectives.

Objectif

Nous avons été assez libre dans la conception de notre projet. Les consignes que nous avons reçues étaient de réaliser un compteur binaire mécanique accompagné d’un compteur décimal, le tout dans une mallette. Pour nous faire comprendre le principe de ce projet, la vidéo suivante accompagnait la consigne.

Nous avons choisi d’utiliser un compteur binaire avec 8 bits pouvant donc compter de 0 à 255. Nous avons également décidé de créer notre propre compteur décimal en 7-segments avec 3 chiffres. Pour cela, nous nous sommes inspiré de l’horloge suivante que nous avons adapté en compteur.

Déroulement

Nous pouvons catégoriser le déroulement du projet en 2 parties:

  • La première partie s’étend du début des séances en janvier jusqu’à début avril. Durant ses séances, le travail était essentiellement en distanciel. Nous avons d’abord brainstormé quelques séances sur la conception du projet, puis nous nous sommes répartis le travail. Pendant qu’un de nous réalisait les pièces du compteur binaire sur Solidworks, un autre concevait la plaque de 7 segments qui allait servir au compteur décimal et le troisième recherchait le matériel qui allait nous être utile.

Capture du compteur binaire en CAO

Pièces du compteur binaire sur Solidworks (face 1)

Capture du compteur binaire en CAO

Pièces du compteur binaire sur Solidworks (face 0)

    Ensuite, nous nous sommes concentrés sur la partie la plus compliquée du projet pour nous : le codage du compteur décimal, puisque nous ne connaissions rien à l’Arduino.
  • La deuxième partie s’étend de début avril jusqu’à la fin des séances en juin, c’est la réalisation du projet. Cette partie a été, pour nous, plus intéressante car les séances étaient désormais en présentiel dans l’atelier de Polytech et nous pouvions constater l’avancement au fur et à mesure que nous réalisions nos pièces. Nous avons également pu utiliser des machines pour la première fois telles que l’imprimante 3D et la fraiseuse.

Plaque découpée à la fraiseuse

Plaque des 7 segments découpée à la fraiseuse

2 palets imprimés en 3D

Palets du compteur binaire imprimés en 3D

    Nous avons préféré le travail à Polytech car il y avait beaucoup de travail manuel pour réaliser le compteur décimal, les potences du compteurs binaires et le design de la mallette.

    disposition des compteurs dans la mallette

    Disposition des éléments dans la mallette

    Le projet s’est grandement accéléré les dernières semaines car nous avons soudé les LEDs NeoPixels du compteur binaire. Cette étape fut très importante car nous avons pu testé nos compteurs binaire et décimal en conditions réelles. Bien que la partie réalisation fut plus plaisante que la partie conception, nous avons néanmoins dû faire face à de nombreux problèmes et de nombreuses frustrations.

Problèmes rencontrés

Ce projet n’a pas été de tous repos et nous avons fait face à de nombreuses difficultés. Les premières difficultés rencontrées étaient liées au code du compteur décimal. Notre code ne comptait pas le 9 aux dizaines et passait de 89 à 100 et de 189 à 200. Heureusement, notre professeur encadrant, M. Godon, nous a aidé en nous montrant ce qui n’allait pas. De plus, nous n’arrivions pas à repartir à 0 après 255.
Comme je l’ai dit dans la partie précédente, la réalisation nous a causé de nombreux problèmes. A chaque nouvelle séance nous avions une mauvaise surprise. Parfois c’était une pièce conçue la séance précédente qui n’était pas bonne, d’autre fois c’était une machine qui était en panne et qui nous empêchait d’avancer comme on le voulait ou bien notre compteur décimal qui ne marchait plus soit car les soudures s’étaient défaites, soit car les LEDs ne fonctionnaient pas (sûrement parce qu’elles avaient cramé).
Lorsque nous avons testé tout le projet dans son ensemble, c’est-à-dire, avec les deux compteurs dans la mallette fonctionnant synchroniquement, nous nous sommes aperçus que le moteur pas-à-pas du compteur binaire n’était plus assez puissant, alors que nous avions fait des tests réussis sur le compteur binaire au préalable.

Conclusion

Ce projet a été très enrichissant pour nous trois, nous avons su travailler en équipe, écouter nos idées et exploiter les qualités de chacun pour travailler efficacement et rendre le travail le plus complet possible. Le projet nous a permis de mettre en pratique ce que nous avons appris ces deux dernières années et nous a fait découvrir de nouvelles choses que nous pourrons possiblement revoir dans la suite de nos études et plus tard. Nous avons été amenés à tester notre réactivité face aux problèmes rencontrés et nous avons su trouver des alternatives rapidement et très souvent par nous-mêmes.
Globalement, nous sommes satisfaits et fiers de notre travail malgré le problème rencontré en toute fin de projet sur le moteur du compteur binaire.

Projet mélangeur de cartes pour le poker

Résultat de recherche d'images pour "poker"

Nous sommes 5 étudiants de 2ème année de cycle préparatoire à Polytech Angers : Réda JALALI, Corentin LAURENDEAU, Maxime MARTIN, Lilian MOUCHARD et Marion WACHOWIAK.

Dans le cadre de notre cursus, nous devons réaliser un projet de conception en 80 heures. Nous avons choisi de réaliser le projet Mélangeur de Cartes, dans lequel nous avions pour objectif de créer un mélangeur de cartes parfait : c’est à dire, où chaque carte à la même probabilité d’être à chaque place du paquet de cartes une fois mélangé.

Sur le marché, il existe des modèles de mélangeurs de cartes parfaits mais ils sont très coûteux : ils sont généralement autour de 15000€ et ne sont utilisés que par les professionnels (casinos, etc), comme ceux-ci

Résultat de recherche d'images pour "deck mate 2"

Il existe également des mélangeurs de cartes peu onéreux, environ 25€ mais non parfait, comme celui-ci, facilement trouvable :

melangeur

DESCRIPTION

Pour cela, nous avons choisi de réaliser une maquette constituée de plusieurs éléments : un éjecteur de cartes, une tour avec 52 étages, un tiroir servant à récupérer les cartes.

Pour la partie éjecteur : nous avons réalisé une maquette en bois, avec du papier et un système avec 3 roues qui tournent grâce à 3 moteurs.

Ce système nous permet d’attraper les cartes une par une et de les guider dans l’éjecteur jusqu’à ce qu’elles soient éjectées dans la tour.

Pour cela, nous avons utilisé une carte Arduino, 3moteurs CC (courant continu) et 2 shields moteur :

 

Ensuite, pour faire monter/descendre l’éjecteur le long de la tour, nous avons utilisé un moteur pas à pas ainsi qu’un capteur photosensible, ce qui permet une précision supérieure à celle que nous aurions pu obtenir avec des moteurs CC.

Le guidage de l’éjecteur le long de la tour est effectué par des crémaillères.

 

En ce qui concerne la tour, elle a été réalisée en CAO sur SolidWorks puis imprimée avec l’imprimante 3D de Polytech Angers.
Lorsque toutes les cartes ont été mises dans la tour, les parois extérieures de celle-ci bougent et la pile de cartes tombe.

Pour cela, nous avons utilisé une carte Arduino et 2 servomoteurs :

 

PARTIE RANDOMISATION

La partie randomisation des cartes est assurée par un programme qui gère les 3 moteurs CC de l’éjecteur. Pour obtenir un “aléatoire parfait” la base du programme est un pin qu’on laisse dans le vide, personne ne peut donc connaître la valeur de celui-ci.

 

FONCTIONNEMENT DE LA MAQUETTE

Le maquette suit les étapes suivantes :

  •  Attraper une carte.
  •  Décider de la place où la positionner dans la tour (réalisé par le programme qui gère les moteurs qui servent à attraper les cartes).
  •  Faire monter l’éjecteur.
  •  Éjecter la carte pour la positionner dans la tour.
  •  Faire redescendre l’éjecteur.
  •  Répéter les opérations suivantes jusqu’à ce que toutes les cartes soient positionnées dans la tour.
  •  Une fois la tour pleine, les servomoteurs se trouvant sous les parois de la tour sont actionnés et elles bougent pour laisser tomber les cartes dans le tiroir situé en dessous.

 

1ère étape : Le système avec les roues attrape une carte puis la guide le long de l’éjecteur.

 

2ème étape : L’éjecteur se déplace en fonction de la position qui a été attribuée à la carte puis éjecte la carte dans la tour.

 

3ème étape : Lorsque toutes les cartes ont été mises dans la tour, les servomoteurs font bouger les parois extérieures de celle-ci pour que la pile de carte tombe.

Il n’y a plus qu’à récupérer les cartes (et à jouer, bien évidemment 😉 !)

 

Voici deux vidéos montrant le fonctionnement de la maquette finale, avec l’éjecteur et la tour :

 

 

Nous tenons à remercier notre encadrant de projet, M. Lagrange.