Projet voiture RC roues 180°

Introduction :

Bonjour à tous, nous sommes Tony Barbier, Jean Nobel et Errol Sistach, tous trois étudiants en deuxième année à Polytech Angers.
Dans le cadre de notre formation, nous sommes amenés à réaliser un projet. Le notre était la conception d’une voiture radiocommandée dont la particularité est la rotation de ses roues sur 180°.

Nous avons choisi ce projet car il est complet, il nous a permis de toucher à plusieurs domaines différents : la CAO, la mécanique, la programmation et l’électronique.
Les différentes étapes de notre projet ont été la modélisation, la programmation et finalement l’usinage de notre voiture.

Travail réalisé :

Présentation de la modélisation :

Châssis
Tout d’abord le châssis. Sur les parties gauches et droites, l’enlèvement de matière sur l’axe horizontal est fait pour laisser passer les servomoteurs. Les deux renfoncements moins profonds sont prévus pour les boulons de serrage lorsque les roues seront soit à 90° à droite soit 90° à gauche.
Les trous sur les parties haute et basse sont faits pour laisser passer les roues quand elles seront complètement tournées.

Essieu avant
Voici l’essieu avant. Les deux essieux sont sensiblement identiques, la seule différence est qu’il n’y a pas de motoréducteurs (en jaune) à l’arrière.
Chaque essieu est composé d’une barre et de deux équerres. Pour pouvoir tourner, le palonnier (l’hélice) du servomoteur est relié à la barre, les essieux seront alors dirigés à gauche ou à droite selon la direction où l’on veut aller.

essieu vue dessus 1essieu vu dessus 2

Pour finir cette partie, les roues arrières seront maintenues grâce à des carrés de fixation. Pour les roues avant, les motoréducteurs servent aussi d’arbres. carré de fixationfixation motoréducteurs

Réception et test des composants :

Arduinomotoréducteurservomoteur

Après avoir réceptionné ces composants, nous avons branché les servomoteurs et les motoréducteurs à la carte Arduino, et nous avons tout alimenté avec une batterie pour vérifier leur bon état de fonctionnement.

Programmation :

Grâce aux bibliothèques AFMotor, Servo et SoftwareSerial il a été très facile de créer un programme pour piloter les moteurs. Il suffisait d’indiquer les pins sur lesquels les moteurs étaient fixés puis d’utiliser les fonctions incluses dans les bibliothèques pour les mettre en mouvement.

téléphone
Grâce au site Mit App Inventor nous avons créé une application Bluetooth Android qui communique avec le module Bluetooth HC-06 et donc pilote la voiture. L’application est constituée d’une interface utilisateur pour se connecter au module Bluetooth puis faire avancer/reculer et tourner la voiture. La partie programmation est intuitive et se fait à l’aide de blocs. Lorsque l’utilisateur appuie sur un bouton, l’application envoie un ordre (par exemple « l » en ASCII pour « left ») et le module Bluetooth récupère cet ordre pour le transmettre à la voiture.

Mais la façon la plus simple de piloter la voiture reste celle sur ordinateur en utilisant le port USB de l’Arduino. Nous avons donc utilisé l’IDE Processing pour développer un programme permettant à l’utilisateur de communiquer avec la carte par l’intermédiaire d’un port USB.

Usinage :

Notre voiture est faite à partir d’une plaque en bois de 5mm d’épaisseur. Nous avons utilisé la fraiseuse du Fablab de Polytech Angers pour usiner chacune des pièces nécessaires à la réalisation de la voiture.

Nous avons ensuite montés les pièces entres elles : usinage 1

Puis nous avons soudé des fils électriques entre les motoréducteurs et la carte Arduino. Et pour finir, nous avons relié le palonnier de chaque servomoteur aux essieux respectifs.

Conclusion :

Ce projet nous aura été très formateur. C’était vraiment intéressant de se tourner vers quelque chose de plus concret.
C’est toujours une bonne expérience de travailler en équipe, d’autant plus lorsque c’est un projet comme cela.
Malheureusement, notre voiture était loin d’être parfaite mais nous sommes quand même fier du travail fourni et du résultat.

Merci à M. Verron pour toute son aide.

Tony Barbier, Jean Nobel, Errol Sistach.

Projet panneau solaire

Dans le cadre de notre deuxième année du cycle préparatoire de l’ISTIA, nous devions réaliser un projet encadré. Nous avons choisi le projet panneau solaire. Ce dernier nous a permis de travailler en groupe, de passer du théorique à l’expérimental et d’acquérir de l’autonomie.

Après nous être documentés, nous avons établi le cahier des charges :

• Créer un panneau capable de suivre la trajectoire du soleil horizontalement et verticalement. En effet, le soleil est plus bas en hiver qu’en été. De plus, pendant une journée de 24 heures, le soleil décrit un mouvement circulaire de l’est vers l’ouest.

Trajectoire du soleil

Trajectoire du soleil

• Protéger le panneau à l’aide d’une structure.

• Installer un système électrique permettant d’assurer la rotation du panneau.

Nous savons que le rendement d’un panneau est maximal lorsque les rayons de soleil sont perpendiculaires à ce dernier. De plus, pour suivre la trajectoire du soleil, nous avons décidé de régler manuellement l’angle d’inclinaison du panneau par rapport au sol. En hiver, l’angle doit être de 30° et en été de 60°. Concernant la rotation, nous avons placé un motoréducteur sur la structure qui permet de suivre la trajectoire du soleil.

La structure permet d’assurer la stabilité du panneau ainsi que sa rotation. Elle doit être résistante afin de supporter le poids du panneau et de ses composants.Notre tuteur de projet nous a fourni une structure en aluminium. Deux membres du groupe sont allés découper la structure à l’IUT d’Angers. De plus, nous souhaitons que la batterie et le régulateur de charge soient intégrés à la structure. C’est pourquoi, nous avons fixé une planche à celle-ci. L’énergie produite est stockée dans une batterie reliée directement à un régulateur de charges. Nous avons branché ce dernier au panneau à l’aide de câbles solaires et de connecteurs MC3.

Structure avec la batterie et le régulateur de charges

Structure avec la batterie et le régulateur de charges

Nous désirons également que le panneau soit protégé. C’est pourquoi, après découpe, nous avons entouré le panneau avec des barres en aluminium.

Réalisation de la découpe

Réalisation de la découpe

Les barres découpées

Les barres découpées

 

Nous avons aussi placé des joints entre le panneau et les barres en aluminium afin de le protéger au maximum.De plus, pour assurer la solidité du montage, nous avons décidé de placer des barres en diagonales qui soutiennent les profilés.

Panneau solaire avec le montage de protection

Panneau solaire avec le montage de protection

Barres avec les joints

Barres avec les joints

 

Concernant la rotation du motoréducteur, nous avons utilisé une carte Arduino avec des capteurs thermiques : le principe est de récupérer les deux valeurs des capteurs, de les comparer et faire tourner le panneau pour que les valeurs des capteurs soient égales. Voici l’algorithme simplifié :

Algorithme simplifié

Algorithme simplifié

Nous tenons à remercier notre tuteur Mr Bouljroufi ainsi que le mécanicien de l’IUT pour leurs aides.

BOGDAN Valentin, COUERON Romain, ESCURAT Anaelle, PHILISTIN Serena