Compteur binaire motorisé

Salut les polypotes !

    Nous sommes Maëlys DUBOIS et Thomas BLAIN, étudiants en deuxième année de cycle préparatoire intégré à Polytech Angers. Pour notre quatrième semestre, nous sommes amenés à mettre en œuvre un projet, de A à Z. Notre objectif est de concevoir puis construire une maquette de démonstration (salons, forum, etc.) d’un compteur binaire motorisé, que l’on pourra facilement déplacer. Nous avons choisi ce projet car il nécessite des compétences en mécanique/conception et en informatique/électronique, domaines sur lesquels nous sommes complémentaires.

I. Présentation du projet

    Le système est composé de 8 pièces double face sur lesquelles il est écrit 0 d’un côté et 1 de l’autre, les pièces sont suspendues à une tige et la première est reliée à un moteur pas à pas qui, quand il tourne, entraîne la première pièce, qui peut ensuite, selon si elle affiche 0 ou 1, entraîner la pièce suivante… Cette disposition permet d’afficher les 255 premiers nombres en binaire dans l’ordre.
    Le cahier des charges du projet était très ouvert ; il demandait uniquement de concevoir le compteur et de le faire fonctionner électroniquement. Nous étions totalement libres sur les options de fonctionnement, le nombre de bits, etc. Les contraintes comprenaient la facilité de transport (poids, taille) et la création d’options en électronique à partir de matériaux simples.

    Vous pouvez voir ci-dessous le principe du système :

    Valeur 0 en binaire

    Valeur 0 en binaire

    Valeur 1 en binaire

    Valeur 1 en binaire

    Valeur 2 en binaire

    Valeur 2 en binaire

    Notre compteur comporte de nombreuses pièces, dont une partie imprimée en 3D, d’autres sont en dibond (plaque plastique entourée de plaques d’aluminium), et d’autres sont en bois.
    Notre objectif avec ce système est de pouvoir retranscrire au grand public le principe du langage binaire, tout en pouvant manipuler un système facile d’utilisation.
    Le principe de base est que vous choisissiez un nombre quelconque pour que le compteur vous affiche son équivalent en binaire.
    Vous pouvez expérimenter 3 modes de fonctionnement différents et indépendants parmi les suivants :
    – Incrémenter un à un grâce à un bouton poussoir. (incrémenter = +1)
    – Incrémenter en continu grâce à un bouton poussoir.
    – Choix du nombre à afficher (entre 0 et 255) en sélectionnant le chiffre souhaité avec un encodeur rotatif (avec bouton) qui commande un afficheur.

II. Travail réalisé

    Nous pouvons distinguer deux parties concernant la mise en forme de notre projet tutoré. Il est composé d’une partie informatique / électronique ainsi que d’une partie mécanique / conception / impression 3D.
    Nous avons débuté notre projet par une phase de discussion sur la conception de notre compteur en général et ses caractéristiques. Nous avons fait un premier choix non définitif concernant les fonctionnalités disponibles et leur application, la taille, le nombre de plaquettes numérotées (soit le nombre de bits), le type de moteur et son mode de transmission, le type de carte de commande de notre compteur, etc.

    Nous nous sommes par la suite lancés dans le dimensionnement des pièces pour que l’ensemble puisse rentrer dans notre valise et dans les essais de composants électroniques dont nous pourrions avoir besoin.
    Après avoir dimensionné les pièces sur le logiciel FUSION 360, nous nous sommes rendu compte que certaines pièces ne pouvaient pas être imprimés en 3D, étant donné leur taille trop importante.

    Modélisation plaquette numérotée sur Fusion360.

    Modélisation plaquette numérotée sur Fusion360.

    La partie électronique du système est dirigée par une carte de commande Arduino UNO. Nous avons pu tester et configurer les fonctionnalités de comptage sur les afficheurs après avoir appris à utiliser le langage Arduino et son logiciel. Nous avons commencé à tester et programmer indépendamment chaque élément électronique dont nous pourrions avoir besoin pour ensuite commencer à les lier ensemble ou améliorer leur fonctionnement.

    Système électronique sous le fond de commande.

    Système électronique sous le fond de commande.

    Système électronique "partie commande".

    Système électronique “partie commande”.

    Nous sommes passés par des phases de recherche de composants que nous ne pouvons pas forcément concevoir en impression 3D.
    Nous avons recherché quel moteur pas à pas serait le plus à même de convenir à notre système, quelles rondelles utiliser pour séparer les plaquettes, quelles charnières utiliser pour basculer notre compteur, quel système poulie-courroie utiliser pour la transmission.

    Notre moteur "pas à pas" et son système de transmission "poulies-courroie".

    Notre moteur “pas à pas” et son système de transmission “poulies-courroie”.

    Étant donné que nous nous sommes rendu compte lorsque nous voulions faire l’impression 3D de nos fonds et de nos potences que ce n’était pas possible pour celles-ci, nous avons opté pour des plaques de dibond pour les fond ainsi que du bois pour les pieds servant à soutenir nos fonds et les blocs de maintien des potences

    Pour finir, nous avons enfin pu procéder à l’assemblage de notre compteur binaire et le relier à son système de commande.

III. problèmes rencontrés

    Concernant la partie mécanique, le premier problème apparu est le dimensionnement finalement peu pertinent autour d’une potence de maintien, afin d’accueillir notre servomoteur, pour que l’on se rende compte qu’un moteur pas à pas serait plus pertinent pour notre système. A la suite de cela, nous avons redimensionné et modifié la potence de maintien censée accueillir le servomoteur, pour l’accueil du moteur pas à pas choisi. Cependant, après discussion avec notre professeur encadrant, il est ressorti qu’il serait préférable d’inclure un système poulie-courroie pour la transmission de notre moteur au compteur. Le moteur ne doit donc plus se trouver sur l’axe de la tige de maintien des plaquettes, ce qui rend le dimensionnement d’un espace moteur dans la potence inutile.
    De plus, nous avons dû changer à quelques reprises les dimensions de nos pièces, mais cela provient plus d’une évolution de notre projet que d’un problème réel.

    Ensuite, nous avons voulu commencer l’impression test de nos pièces en 3D mais nous avons attendu 2 mois sans que cela ne puisse être possible. Les files d’attente étaient très longues et toutes les imprimantes 3D étaient HS. Jusqu’à la fin de notre projet, nous n’avons donc jamais pu imprimer nos pièces. De ce fait, nous avons dû chercher à contacter une connaissance possédant une imprimante 3D et qui pourrait nous aider pour la conception de nos pièces finales.

    Concernant la partie électronique, c’est notre manque de connaissance qui nous a causé le plus de tort. Nous sommes donc assez limités lorsque des problèmes surviennent. Lorsque les programmes ne fonctionnent pas comme nous l’attendions, cela peut nous prendre beaucoup de temps afin de résoudre le problème.
    Ensuite, nous avons eu quelques soucis avec le logiciel Arduino. Nous avions un problème de bibliothèque, qui ne fonctionnait pas sous linux. Il a donc fallu passer sous Windows, mais ça n’a pas fonctionné dès le début. C’est en passant sur le logiciel Arduino en ligne que notre programme a pu fonctionner normalement.
    Il a aussi fallu adapter, tout au long du projet, les options du compteur au fur et à mesure des essais des composants. Il y avait des composants auxquels nous n’avions pas pensé au préalable, d’autres qui étaient finalement trop compliqués à utiliser, etc.

IV. Conclusion

    Pour conclure, nous sommes plutôt satisfaits du résultat final par rapport à notre idée initiale du projet. Notre système fonctionne très bien dans les grandes lignes.
    Il arrive de temps en temps que les plaquettes poussantes ne tombent pas parfaitement à l’emplacement qui leur est dédiée et les potences de maintien ont un léger jeu avec les blocs de support, ce qui pose un léger problème de tension de notre courroie de transmission. Exceptés ces deux points, le compteur binaire est fonctionnel, même s’il pourrait être amélioré. Nous pourrions régler ces problèmes de potence et de pièces, ajouter un décompte sur le compteur ou encore améliorer l’esthétique du projet.
    La réalisation de ce projet a été pour nous très instructive. Ce dernier s’est reposé sur un travail coopératif où nous avons beaucoup appris. Nous avons fait face à différentes problématiques, que nous avons su résoudre.

    Voici donc le résultat de notre compteur binaire :

    Position "utilisation du système"

    Position “utilisation du système”

    Position "repos/transport"

    Position “repos/transport”

    Vous pouvez consulter notre compte rendu qui vous expliquera plus en détail le déroulé du projet ici :

    Merci de votre attention !

    Maëlys et Thomas, PeiP 2A, Polytech Angers

Compteur binaire motorisé

Nous sommes un groupe de 3 étudiants de PEIP 2A constitué de Mattéo NAIS, Emylien PAUTONNIER et Hugues THEZELAIS. Dans le cadre des projets tutorés nous avons travaillé sur un projet de compteur binaire motorisé tenant dans une mallette pour être facilement transportable sur les différents salons et forums.
Ce projet est un mélange d’électronique, de mécanique et de CAO dans lequel chacun pouvait exprimer ses qualités respectives.

Objectif

Nous avons été assez libre dans la conception de notre projet. Les consignes que nous avons reçues étaient de réaliser un compteur binaire mécanique accompagné d’un compteur décimal, le tout dans une mallette. Pour nous faire comprendre le principe de ce projet, la vidéo suivante accompagnait la consigne.

Nous avons choisi d’utiliser un compteur binaire avec 8 bits pouvant donc compter de 0 à 255. Nous avons également décidé de créer notre propre compteur décimal en 7-segments avec 3 chiffres. Pour cela, nous nous sommes inspiré de l’horloge suivante que nous avons adapté en compteur.

Déroulement

Nous pouvons catégoriser le déroulement du projet en 2 parties:

  • La première partie s’étend du début des séances en janvier jusqu’à début avril. Durant ses séances, le travail était essentiellement en distanciel. Nous avons d’abord brainstormé quelques séances sur la conception du projet, puis nous nous sommes répartis le travail. Pendant qu’un de nous réalisait les pièces du compteur binaire sur Solidworks, un autre concevait la plaque de 7 segments qui allait servir au compteur décimal et le troisième recherchait le matériel qui allait nous être utile.
Capture du compteur binaire en CAO

Pièces du compteur binaire sur Solidworks (face 1)

Capture du compteur binaire en CAO

Pièces du compteur binaire sur Solidworks (face 0)

    Ensuite, nous nous sommes concentrés sur la partie la plus compliquée du projet pour nous : le codage du compteur décimal, puisque nous ne connaissions rien à l’Arduino.
  • La deuxième partie s’étend de début avril jusqu’à la fin des séances en juin, c’est la réalisation du projet. Cette partie a été, pour nous, plus intéressante car les séances étaient désormais en présentiel dans l’atelier de Polytech et nous pouvions constater l’avancement au fur et à mesure que nous réalisions nos pièces. Nous avons également pu utiliser des machines pour la première fois telles que l’imprimante 3D et la fraiseuse.
Plaque découpée à la fraiseuse

Plaque des 7 segments découpée à la fraiseuse

2 palets imprimés en 3D

Palets du compteur binaire imprimés en 3D

    Nous avons préféré le travail à Polytech car il y avait beaucoup de travail manuel pour réaliser le compteur décimal, les potences du compteurs binaires et le design de la mallette.

    disposition des compteurs dans la mallette

    Disposition des éléments dans la mallette

    Le projet s’est grandement accéléré les dernières semaines car nous avons soudé les LEDs NeoPixels du compteur binaire. Cette étape fut très importante car nous avons pu testé nos compteurs binaire et décimal en conditions réelles. Bien que la partie réalisation fut plus plaisante que la partie conception, nous avons néanmoins dû faire face à de nombreux problèmes et de nombreuses frustrations.

Problèmes rencontrés

Ce projet n’a pas été de tous repos et nous avons fait face à de nombreuses difficultés. Les premières difficultés rencontrées étaient liées au code du compteur décimal. Notre code ne comptait pas le 9 aux dizaines et passait de 89 à 100 et de 189 à 200. Heureusement, notre professeur encadrant, M. Godon, nous a aidé en nous montrant ce qui n’allait pas. De plus, nous n’arrivions pas à repartir à 0 après 255.
Comme je l’ai dit dans la partie précédente, la réalisation nous a causé de nombreux problèmes. A chaque nouvelle séance nous avions une mauvaise surprise. Parfois c’était une pièce conçue la séance précédente qui n’était pas bonne, d’autre fois c’était une machine qui était en panne et qui nous empêchait d’avancer comme on le voulait ou bien notre compteur décimal qui ne marchait plus soit car les soudures s’étaient défaites, soit car les LEDs ne fonctionnaient pas (sûrement parce qu’elles avaient cramé).
Lorsque nous avons testé tout le projet dans son ensemble, c’est-à-dire, avec les deux compteurs dans la mallette fonctionnant synchroniquement, nous nous sommes aperçus que le moteur pas-à-pas du compteur binaire n’était plus assez puissant, alors que nous avions fait des tests réussis sur le compteur binaire au préalable.

Conclusion

Ce projet a été très enrichissant pour nous trois, nous avons su travailler en équipe, écouter nos idées et exploiter les qualités de chacun pour travailler efficacement et rendre le travail le plus complet possible. Le projet nous a permis de mettre en pratique ce que nous avons appris ces deux dernières années et nous a fait découvrir de nouvelles choses que nous pourrons possiblement revoir dans la suite de nos études et plus tard. Nous avons été amenés à tester notre réactivité face aux problèmes rencontrés et nous avons su trouver des alternatives rapidement et très souvent par nous-mêmes.
Globalement, nous sommes satisfaits et fiers de notre travail malgré le problème rencontré en toute fin de projet sur le moteur du compteur binaire.