Voiture à air pressurisé

Bonjour à toutes et à tous!

Bienvenue sur le blog du projet de voiture à air pressurisé. Nous sommes trois étudiants en 2ème année du cycle préparatoire de Polytech Angers : Kieran Yvenou, Lucas Perret et Gabriel Drapeau. Nous avons pris plaisir à rédiger et à transmettre notre projet à travers ce blog.

Photo du groupe, respectivement de gauche à droite. Lucas Perret, Kieran Yvenou et Gabriel Drapeau

Photo du groupe, respectivement de gauche à droite. Lucas Perret, Kieran Yvenou et Gabriel Drapeau

Introduction à notre projet :

Notre projet consiste à reproduire, améliorer et imprimer si possible, une voiture à air pressurisé, nous avons eu accès au plan de conception et à plusieurs images de la voiture original. Nous avons dû comprendre le fonctionnement du système. Celui-ci consiste à remplir une bonbonne d’air qui va se vider par l’intermédiaire d’un système de pression qui va être entraîné par des pistons et des engrenages suite à une poussée de départ.

Voici une photo du véhicule à air pressurisé original :

Voiture a air pressurisé, jeu

Voiture a air pressurisé, jeu

Objectif de notre projet

L’objectif est premièrement de comprendre l’utilité de chaque pièce, de les reproduire sous Solid-Works (pour notre cas), d’optimiser certaines pièces pour permettre d’améliorer considérablement les capacités de notre véhicule. Nous pouvons améliorer de nombreuses choses, comme par exemple : la masse des pièces, le rendement des engrenages, la pression d’air ou encore la vitesse du véhicule…
Deuxièmement, nous avons pour objectif de faire une course entre deux véhicules crées et optimisés par deux équipes différentes, cependant par faute de temps, les prototypes n’ont pas pus être imprimés en 3D.

Conception assistée par ordinateur (SOLIDWORK-Student version) :

Nous avons reproduit le véhicule original sur SolidWorks, c’est-à-dire que nous avons reproduit chacune des pièces tout en comprenant leur utilité. Cette conception a été une grosse partie de notre travail. Il a fallu d’abord bien analyser les plans, la brochure… Puis comprendre les dimensions du véhicule et réadapter toutes les pièces avec leurs fonctions de base les unes par rapport aux autres car nous avons tous utilisé SolidWorks pendant ce projet.

Voici une photo de l’assemblage :

Assemblage du véhicule sous SolidWorks

Assemblage du véhicule sous SolidWorks

Essais du véhicule original dans les locaux de Polytech Angers :

Après 8 semaines de conception du véhicule, nous avons pu voir le véhicule original et le tester. Nous avons pu confirmer nos compréhensions sur le fonctionnement et sur l’utilité de chaque pièce mais aussi répondre aux différentes questions que nous pouvions avoir. Nous avons fait plusieurs essais sur le véhicule, nous avons mesuré sa vitesse linéaire, sa masse, les dimensions de certaines pièces…

Optimisation du véhicule :

La partie “Optimisation” est très importante puisqu’elle permet d’améliorer le véhicule tout en prenant en compte certaines contraintes (ex : couple, puissance, vitesse, masse). Nous avons amélioré plusieurs pièces, par exemple, nous avons modifié la surface des roues, nous avons ajouté une coque autour du véhicule pour l’esthétique et la propagation dans l’air, le fonctionnement du système a été amélioré. Nos optimisations n’ont pas pu être testées dans la réalité par faute de temps, mais la théorie confirme une amélioration des fonctions du véhicule.

Voici une capture du véhicule après les optimisations :

Assemblage du véhicule optimisé sous SolidWorks

Assemblage du véhicule optimisé sous SolidWorks

Par exemple, voici la surface des roues avants & arrières :

Roue avant avec surface arrondie

Roue avant avec surface arrondie


Roue arrière avec surface plane et siliconée

Roue arrière avec surface plane et siliconée

Les roues avant ont une surface arrondie pour diminuer les frottements, tandis que les roues arrière ont une surface plane et en silicone pour transmettre le couple et la vitesse.

coque pour le véhicule à air pressurisé

coque pour le véhicule à air pressurisé


Voici une image de notre coque.

Essais d’impression 3D de certaines pièces :

Nous avons imprimé 1 pièce pour vérifier nos dimensions et les épaisseurs d’impression. L’impression totale du véhicule n’était pas notre but, notamment par faute de temps, et d’imprimante 3d disponible. Dans notre cas, nous avons imprimé une roue avant:

Roue avant du véhicule optimisé

Roue avant du véhicule optimisé


Roue avant du véhicule optimisé

Roue avant du véhicule optimisé

Le travail en équipe est un atout non-négligeable :

Le travail en équipe lors de projets est très important, notamment dans les séances de “brainstorming”. En effet, chaque personne du groupe apporte des idées différentes, plus ou moins réalisables. L’importance réside dans la communication et les débats autour des idées proposées, cela a permis de clairement exprimer notre avis. Le travail d’équipe est une compétence importante et prédominante dans notre futur métier d’ingénieur.

Conclusion :

Ce projet a été très enrichissant du point de vue de l’utilisation de nos compétences acquises durant le cycle préparatoire. Le travail d’équipe, les brainstormings et la répartition des tâches nous a permis d’être efficace pendant nos séances. Nous avons pris beaucoup de plaisir à le réaliser et à le partager avec vous.

Soufflerie aérodynamique à flux laminaire

Bonjour à tous!

En cette fin de cycle préparatoire de Polytech Angers, nous avons pu réaliser un projet de conception. Nous nous sommes imposé comme objectif de réaliser un projet qui nécessiterait la mise en pratique de compétences et connaissances acquises durant ce cycle préparatoire.Quant au choix de notre sujet, nous avons décidé d’approfondir un phénomène découvert lors d’une séance de travaux pratique de mécanique appliquée. En effet, ce TP était consacré à l’étude de l’écoulement de l’air. Concept que nous avions déjà abordé en première année, en mécanique des fluides. L’un des objectifs, ce jour-là, fut de mesurer la portance et la traînée aérodynamiques d’une aile pour différents angles d’attaques d’un profil d’aile.

avion plat
Nous avons pu conclure qu’après un certain angle d’incidence entre l’aile et le flux d’air généré par le tunnel, l’aile perd subitement la plupart de sa portance aérodynamique ce qui s’apparente à sa capacité à “voler”. Cela correspond dans l’aviation au phénomène de décrochage, qui est la principale cause d’accident mortel en aviation commerciale.avion décollage
Ainsi, nous avons choisi d’étudier ce phénomène et de l’expliquer de manière simple et visuelle en construisant notre propre soufflerie aérodynamique à flux laminaire.

Objectifs :

Afin d’expliquer simplement comment une aile subit un décrochage nous avons donc construit une soufflerie, avec l’ajout de vapeur épaisse pour visualiser l’action de l’air sur l’aile. En effet lors du décrochage, on peut visuellement noter des turbulences dans l’air.

Observez sur le dessin ci-dessous les flux d’air sur toute la surface de l’aile.

aile plat

À mesure que l’angle d’attaque augmente, le flux d’air supérieur commence à se séparer de la queue de l’aile. Cela crée des turbulences dans son sillage.

aile décollage

Enfin, l’avion décroche lorsque l’angle d’attaque critique, spécifique à la surface portante, est dépassé. Après quoi, le flux d’air supérieur se sépare soudainement de l’aile, ce qui réduit dangereusement la portance. L’avion est donc en situation de décrochage.

aile décrochage

Expérimentations :

Une de nos première réalisation fut de créer une ébauche en 3D de notre projet afin de pouvoir étudier les problèmes auxquels nous allions être confrontés. Pour cela, nous avons utilisé le logiciel Sketchup Web qui a l’avantage d’être sur un serveur en ligne et donc d’être accessible sur n’importe quel ordinateur, sans avoir à télécharger de logiciel.

projet 3D

  • Un des éléments principaux de notre soufflerie , l’aile(4), fut imprimés en 3D afin d’assurer une pièce la plus lisse possible. Le forme de l’aile est un véritable profilé, car il correspond au profil NACA 4418 utilisé sur de véritables aéronefs.
  • Pour notre expérience, nous avions besoin d’amener de la vapeur dans notre tunnel, nous avons donc placé un ventilateur(5) à l’envers, à sa sortie. Ce qui a pour effet d’aspirer l’air, avec peu de perturbations.
  • Toutefois, cet air est très turbulent et donc rend la visualisation difficile, nous avons donc placé une structure en nid d’abeilles(1), imprimée en 3D, afin de rectifier le flot d’air et ainsi avoir un flux plus ou moins laminaire.
  • Afin de pouvoir observer les flux de vapeur plus facilement nous avons placé une rangée de LEDs(2) sur le dessus du tunnel.
  • Pour pouvoir mesurer la vitesse du vent nous avons mis en place une sonde de Pitot(3), nous l’avons placé sur le bas du tunnel, là où elle génère le moins de turbulence.

photo légende

Enfin, le pilotage de l’ensemble fut réalisé grâce à la carte programmable Arduino Uno. Le pilotage du ventilateur, des lumières et du servomoteur se fait à l’aide de potentiomètre et de bouton-poussoir.
La mesure de la vitesse du vent dans le tunnel est lisible depuis l’environnement de développement d’Arduino.

breadboard

Aperçu du rendu final :

Conclusion :

L’expérience fut donc enrichissante et stimulante, que ce soit en terme de travail d’équipe ou de résolution de problèmes. De plus, ce fut l’occasion d’en apprendre davantage sur des sujets qui nous passionnent, et d’expérimenter dans ces domaines. Nous avons pu travailler avec de nombreux professeurs et techniciens qui nous ont partagé leurs connaissances et expériences, ce que nous avons particulièrement apprécié et nous les en remercions.

Macadré Clément
Guerineau Maxence