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WEIGHTED MULTILEVEL LANGEVIN SIMULATION OF
INVARIANT MEASURES

BY GILLES PAGÈS AND FABIEN PANLOUP

UPMC and Université d’Angers

We investigate a weighted multilevel Richardson–Romberg extrapola-
tion for the ergodic approximation of invariant distributions of diffusions
adapted from the one introduced in [Bernoulli 23 (2017) 2643–2692] for reg-
ular Monte Carlo simulation. In a first result, we prove under weak confluence
assumptions on the diffusion, that for any integer R ≥ 2, the procedure allows

us to attain a rate n
R

2R+1 whereas the original algorithm convergence is at a
weak rate n1/3. Furthermore, this is achieved without any explosion of the
asymptotic variance. In a second part, under stronger confluence assumptions
and with the help of some second-order expansions of the asymptotic error,
we go deeper in the study by optimizing the choice of the parameters involved
by the method. In particular, for a given ε > 0, we exhibit some semi-explicit
parameters for which the number of iterations of the Euler scheme required
to attain a mean-squared error lower than ε2 is about ε−2 log(ε−1).

Finally, we numerically test this multilevel Langevin estimator on several
examples including the simple one-dimensional Ornstein–Uhlenbeck process
but also a high dimensional diffusion motivated by a statistical problem.
These examples confirm the theoretical efficiency of the method.

CONTENTS

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3359
Outline of the paper and main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3366

2. The Multilevel-Romberg Ergodic (ML2Rgodic) procedure . . . . . . . . . . . . . . . . . . 3366
2.1. Design of the ML2Rgodic Langevin estimator . . . . . . . . . . . . . . . . . . . . . . 3366
2.2. Optimization procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3375

3. Expansion of the error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3377
3.1. Higher order expansion of ν

γ
n (f )− ν(f ) (coarse level) . . . . . . . . . . . . . . . . . 3378

3.2. Error expansion of the correcting levels . . . . . . . . . . . . . . . . . . . . . . . . . . 3385
4. Rate of convergence for the dominating martingales . . . . . . . . . . . . . . . . . . . . . . 3387

4.1. The dominating martingale term involved in ν
γ
n (f )− ν(f ) . . . . . . . . . . . . . . . 3387

4.2. The dominating martingale in the error expansion of (μ
M,γ
n (f ))n≥1 . . . . . . . . . . 3389

4.2.1. Long run behavior of M(ϕ) under strong confluence . . . . . . . . . . . . . . . 3391
4.2.2. Long run behavior of N (h2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3394

5. Proofs of the main theorems (CLT and optimization) . . . . . . . . . . . . . . . . . . . . . 3396
5.1. Proof of Theorem 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3396

Received July 2016; revised June 2017.
MSC2010 subject classifications. 60J60, 37M25, 65C05.
Key words and phrases. Ergodic diffusion, invariant measure, multilevel, ergodicity, Richardson–

Romberg, Monte Carlo, PAC-Bayesian.

3358

http://www.imstat.org/aap/
https://doi.org/10.1214/17-AAP1364
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


WEIGHTED MULTILEVEL LANGEVIN SIMULATION 3359

5.2. Proof of Theorem 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3398
5.3. Proof of Theorem 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3399

6. Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3404
6.1. Practitioner’s corner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3404

� The weights W(R)
r )r=1,...,R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3404

� Computation of R(ε,M) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3405
� Values for �(M) and choice of M . . . . . . . . . . . . . . . . . . . . . . . . . . . 3405
� Computation of n(ε,M) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3405
� Calibration of the parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3406

6.2. Numerical tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3407
Orstein–Uhlenbeck process: Oracle and blind simulation . . . . . . . . . . . . . . . . 3407
Double-well potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3409
Statistical example (sparse regression learning) . . . . . . . . . . . . . . . . . . . . . . 3410

7. About multilevel finite horizon approach for approximation of invariant distribution . . . . 3412
Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3414
Supplementary Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3415
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3415

1. Introduction. Let (Xt)t∈[0,T ] be the unique strong solution to the stochas-
tic differential equation (SDE)

dXt = b(Xt) dt + σ(Xt) dWt

starting at X0 where W is a standard R
q -valued standard Brownian motion, inde-

pendent of X0, both defined on a probability space (�,A,P), where b :Rd →R
d

and σ :Rd →M(d, q,R) (d × q-matrices with real entries) are locally Lipschitz
continuous functions with at most linear growth. The process (Xt)t≥0 is a Markov
process and we denote by Pμ its distribution starting from X0 ∼ μ. Let L denote
its infinitesimal generator, defined on twice differentiable functions g : Rd → R

by

Lg = (b|∇g)+ 1

2
Tr

(
σ ∗D2gσ

)
,

where (·|·) denotes the canonical inner product on R
d , D2g denotes the Hessian

matrix of g and Tr denotes the trace operator. As soon as there exists a continuously
twice differentiable Lyapunov function V :Rd →R+ such that

(1.1) sup
x∈Rd

LV (x) <+∞ and lim sup
|x|→+∞

LV (x) < 0,

there exists an invariant probability measure ν for the diffusion in the sense that
X is a stationary process under Pν , so that Xt ∼ ν for every t∈ R+. Under appro-
priate (hypo-)ellipticity assumptions on σ or global confluence assumptions (on
this topic see, e.g., [17]), this invariant measure ν is unique, hence ergodic. In
particular,

Pν(dω)-a.s. μt(ω, dξ)= 1

t

∫ t

0
δXs(ω) ds

(Rd )=⇒ ν,
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where
(Rd )=⇒ denotes weak convergence of distributions on R

d (see, e.g., [2] or [11]
for background). We will assume that this uniqueness holds throughout the paper.
Under slight additional assumptions, one shows that the diffusion is stable in the
sense that

∀x ∈Rd,Px(dω)-a.s. μt(ω, dξ)
(Rd )=⇒ ν.

This Px-a.s. convergence is ruled by Bhattacharya’s CLT (see [1] for detailed
assumptions), namely, if f :Rd →R is such that the Poisson equation f −ν(f )=
−Lg admits a solution, then

(1.2)
√

t
(
μt(ω,f )− ν(f )

) (Rd )=⇒N
(
0, σ 2(f )

)
with σ 2(f )= ∫

Rd |σ ∗∇g|2 dν where σ ∗ denotes the transpose matrix of σ .
In a series of papers (see, e.g., [12, 13, 15, 19, 20, 22]), the above prop-

erties have been exploited in order to compute by ergodic simulation integrals∫
f dν = Eνf (Xt) or, more generally, EνF ((Xt)t∈[0,T ]) where F is a (path-

dependent) functional defined on the space C([0, T ],Rd) (see also [30] or [24]
for other references on the topic or more recently [6]).

The starting idea is to mimic (1.2). First, we replace the diffusion X by a an Eu-
ler scheme with decreasing step. To be more precise, we consider, for a given non-
increasing sequence of positive steps γn ↓ 0, n ≥ 1, the associated Euler scheme
with decreasing step defined by

(1.3) X̄n+1 = X̄n + γn+1b(X̄n)+ σ(X̄n)(W�n −W�n−1), n≥ 0, X̄0 =X0,

where �n = γ1 + · · · + γn, n ≥ 1. Then we introduce (for technical matter to be
explained further on) a general nonnegative weight sequence (ηn)n≥1 and the re-
sulting η-weighted empirical (or occupation) measures of the above Euler scheme,
namely

νη,γ
n (ω, dx)= 1

Hn

n∑
k=1

ηkδX̄k−1(ω).

The computation of

νη,γ
n (f ) :=

∫
f dνη,γ

n

can be performed recursively, once noted that

(1.4) νη,γ
n (f )= ηn

Hn

f (X̄n)+
(

1− ηn

Hn

)
ν

η,γ
n−1(f ), ν

η,γ
0 (f )= 0.

It is clear that, in order to let the scheme explore the whole state space R
d and to

let the empirical measures take into account new values as n grows, we ask that
the pair (ηn, γn)n≥1 satisfies

(1.5)
Hn := η1 + · · · + ηn→+∞, γn ↓ 0 and

�n := γ1 + · · · + γn→+∞,
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as n→+∞. When η = γ , the γ -empirical measure νγ,γ is the natural counter-
part of μt and one expects that, under natural mean-reverting assumptions similar

to (1.1) (or slightly more stringent), Px(dω)-a.s. ν
η,γ
n (ω, dx)

(Rd )=⇒ ν taking advan-
tage of the fact that the step γn ↓ 0. The major difference with the above continuous
time Birkhoff’s pointwise ergodic theorem is that, provided b and σ can be com-
puted easily, these random measures taken against a (computable) function f can
in turn be simulated. This suggests to look for ergodic simulation methods, also
known as Langevin Monte Carlo simulation to compute ν(f ). To be more precise,
the term Langevin Monte Carlo simulation commonly refers to the case where the
diffusion satisfies b(x) = −∇V (x) and σ(x) = σ > 0 is constant whereas, most
often but not always, the Euler discretization scheme also has a constant step (see,
e.g., among others, [27, 28]). It can be seen as a general terminology for ergodic
simulation. Note that, though we will not go deeper in that direction, when ν has
a density h with respect to the Lebesgue measure λd on R

d , such an approach
appears as a probabilistic numerical scheme for solving the stationary Fokker–
Planck equation L∗h= 0 by providing the values of as many integrals

∫
f hλd as

requested.
Let us first recall one simple convergence result for the a.s. weak convergence

of the weighted empirical measures (ν
η,γ
n )n≥1 [see Theorem V.2 borrowed and

slightly adapted from [12] (see also [14])].

PROPOSITION 1.1. Assume b and σ satisfy the mean-reverting assumption:

(S) There exists a positive C2-function V :Rd →R+ and ρ ∈ (0,+∞) such that

lim|x|→+∞
V (x)

|x|ρ =+∞, |∇V |2 ≤ CV and sup
x∈Rd

∥∥D2V (x)
∥∥ <+∞

and there exist some real constants Cb > 0, α > 0 and β ≥ 0 such that:

(i) |b|2 ≤ CbV , Tr(σσ ∗)(x)= o(V (x)) as |x| →+∞.
(ii) (∇V |b)≤ β − αV .

Then (SDE) admits at least one invariant distribution ν and for every x ∈ Rd

and p > 0, supnExV
p(X̄n) <+∞.

Assume ν is the unique invariant measure of (SDE). If the pair (ηn, γn)n≥1 sat-
isfies (1.5)

(1.6)
∑
n≥2

1

Hn

(
ηn

γn

− ηn−1

γn−1

)
+

<+∞ and
∑
n≥1

(
ηn

Hn
√

γn

)2
<+∞

then, Px(dω)-a.s. ν
η,γ
n (ω, dx)

(Rd )=⇒ ν.
Moreover, Px-a.s., for every ν-a.s. continuous functions R

d → R with V -
polynomial growth,

(1.7) νη,n(ω,f )→ ν(f ) as n→+∞.
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REMARK 1.1. � By V -polynomial growth, we mean that f =O(V p) at in-
finity for some p > 0.

� The condition (S) is stronger than (1.1). It implies that there exists α′ ∈ (0,+∞)

and β ∈ R such that LV ≤ β ′ − α′V . In fact, the conclusions of the above
proposition are also true for the continuous time occupation measure μt(ω) =
1
t

∫ t
0 δXs(ω) ds of the diffusion itself.

� The above result remains true under weaker Lyapunov assumptions of the fol-
lowing type: LV ≤ β ′−α′V a with a ∈ (0,1]. For the sake of simplicity, we choose
in this paper to state the results under (S) only but all what follows can be extended
to the weaker setting owing to additional technicalities [involving the control of the
moments of the diffusion or of the Euler scheme (1.3)].

� In the above proposition, the condition

lim|x|→+∞
V (x)

|x|ρ =+∞

can be relaxed into

lim|x|→+∞V (x)=+∞.

The interest of this slightly strengthened assumption is to ensure that, in the sequel,
every function f with regular polynomial growth has a V -polynomial growth as
well.

DEFINITION 1.1. A pair (ηn, γn)n≥1 (with decreasing γn) satisfying (1.5)
and (1.6) is called an averaging system.

EXAMPLES. If γn = γ1n
−a and ηn = η1n

−c, then the pair (ηn, γn)n≥1 is
averaging as soon as 0 < a < 1 and 0 < c < 1. In practice, we will exten-
sively use that, furthermore, the pairs of the form (γ �

n , γn)n≥1 are averaging for
� ∈ {1, . . . , � 1

a
� − 1} so that a� < 1.

The rate of convergence of ν
η,γ
n (f ) toward ν(f ) has also been elucidated and

reads as follows (when d = 1 and ηn = γn for the sake of simplicity, keeping in
mind that even in that setting, various averaging systems are involved):

Set �
(2)
n =∑n

k=1 γ 2
k , n≥ 1. Assume the Poisson equation f − ν(f )=−Lg has

a smooth enough solution and that �
(2)
n√
�n
→ β̃ , then

√
�n

(
νγ,γ
n (f )− ν(f )

) (R)−→N
(
β̃ν(�2);σ 2

1 (f )
)

if β̃ ∈ [0,+∞),(1.8)

�n

�
(2)
n

(
νγ,γ
n (f )− ν(f )

) a.s.−→ ν(�2) if β̃ =+∞(1.9)
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with σ 2
1 (f )= ν(|σ ∗∇g|2)=−2ν(g.Lg) and

�2(x) := 1

2
D2g(x)b(x)⊗2 + 1

24
E
[
D(4)g(x)

(
σ(x)U

)⊗4]
, U ∼N (0, Iq).

When γn = n−a , the unbiased CLT (β̃ = 0) holds for a ∈ (1
3 ,1], the biased CLT

for a = 1
3 and the biased convergence in probability for a ∈ (0, 1

3).
On can interpret this result as follows: if (γn) decreases to 0 fast enough (β̃ =

0), the empirical measures ν
γ,γ
n behaves like the empirical measures μt of the

diffusion. When (γn) goes to 0 too slowly, there is a discretization effect which
slows down the convergence of the empirical measure at rate �n

�
(2)
n

. The convergence

then holds a.s. (or at least in probability) which confirms that what slows down the
convergence is a bias term whose rate of decay is lower than 1/

√
�n. The top rate

of convergence is obtained with a biased CLT .
We will see in Theorem 2.1 further on that, in fact, there are many of these

bias terms which go to 0 slower than the CLT rate for slowly decreasing steps.
So killing these terms is a major issue to speed up such ergodic simulations (or
Langevin Monte Carlo method) compared to the regular Monte Carlo method.

The multilevel paradigm has been introduced by M. Giles in the late 2000s
(2008, see [8]). Ever since, it has been extensively adapted to various types of
simulations (nested Monte Carlo, see [16], stochastic approximation [5]) and dy-
namics (Lévy driven diffusion, random maps, etc.) as a bias killer. The principle
is the following: assume that a quantity of interest to be computed does have a
representation as an expectation, say EY0, but that the random variable Y0 can-
not be simulated at a reasonable computational cost. Then one usually approx-
imates Y0 by a family (Yh)h>0 of random vectors that can be simulated with a
reasonable complexity, usually inversely proportional to h, relying on simulable
time discretization schemes of the underlying dynamics. The typical situation is
Y0 = f (XT ) or F((Xt)t∈[0,T ]) where (Xt) is a Brownian diffusion as above and
Yh = f (X̄n

T ) or F((X̄n
t )t∈[0,T ]) where (X̄t )t∈[0,T ] is a discretization scheme, say an

Euler or a Milstein scheme with step h= T
n
∈H= { T

m
,m ∈N∗}. A multilevel esti-

mator with depth L ∈N∗ of EY0 is designed by implementing a nonhomogeneous
multilevel Monte Carlo (MLMC) estimator of size N ∈N∗ of the form

1

N1

N1∑
k=1

Y
(1),k
h +

L∑
�=2

1

N�

N�∑
k=1

Y
(�),k

h
M�−1

− Y
(�),k

h
M�−2

,

where h ∈ H is a fixed coarse step, ((Y
(�),k
h )h∈H)�=1,...,L,k≥0 are independent

copies of (Yh)h∈H, M ≥ 2 is a fixed integer and N1, . . . ,NR is an appropriate
(optimized) allocation policy of the simulated paths across the levels � such that
N1 + · · · + NR = N (in practice, at a given level �, only Y

(�)
h

M�−1
and Y

(�)
h

M�−2
have

to be simulated). The level � = 1 is the coarse level whereas the levels � ≥ 2 are
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the refined levels. Within a refined given level �, Y
(�),k

h

M�−2
denotes the coarse scheme

and Y
(�),k

h

M�−1
the refined scheme. For some fixed k and �, the random variables are

“consistent” in the sense that they have been simulated from the same underlying
Brownian motion W(�). A way to quantify this consistency is that Yh converges in
(squared) quadratic norm to Y0 at an hβ rate, namely ‖Yh−Y0‖2

2 ≤ V1|h|β , h ∈H.
The parameter β depends on f or F and on the selected discretization scheme in
a diffusion framework. Thus, with an Euler scheme, if f or F are locally Lips-
chitz continuous with polynomial growth (with respect to the sup norm as for F ),
β = 1. This parameter β and the constant V1 are key parameters to optimize the
allocations of the paths to the various levels (see [8, 16]).

Among other results, it is proved in [8] that, if α = 1 and β = 1—which is the
standard situation in a diffusion discretized by an Euler scheme with step h = T

n

when Y0 = f (XT ), Yh = f (X̄n
T ), f , b, σ smooth enough (or σ uniformly elliptic if

f is simply Borel and bounded)—the resulting complexity of the optimized mul-
tilevel Monte Carlo estimator to attain a prescribed mean squared error ε2 behaves
like O((log(1/ε)/ε)2) as ε→ 0. When β > 1 (fast strong approximation like with
the Milstein scheme or its antithetic Giles–Szpruch simulable variant [9] in higher
dimension), this rate attains O(ε−2), that is, the rate of a (virtual) unbiased sim-
ulation. The case β < 1 provides even better improvements compared to a crude
Monte Carlo simulation.

In a recent paper (see [16]), a weighted version of the above multilevel estimator
has been devised to take advantage of a higher order expansion of the weak error
(bias expansion) up to an order R ∈N∗, namely

EYh =
R∑

r=1

crh
αr +O

(
hα(R+1)),

still under the above quadratic convergence rate assumption. Then the so-called
multilevel Richardson–Romberg estimator (ML2R in short) is still based on the
simulation of independent copies of (Yh)h∈H and reads

W(R)
1

N1

N1∑
k=1

Y
(1),k
h +

R∑
r=2

W(R)
r

Nr

Nr∑
k=1

Y
(r),k

h
Mr−1

− Y
(r),k

h
Mr−2

,

where the R-tuple (W(R)
r )1≤r≤R of weights has a closed form entirely determined

by α, M and R and not on (Yh)h≥0 (that means on the specific form of f , b,
σ in a diffusion framework). For this weighted estimator, the complexity is re-
duced mutatis mutandis to O(log(1/ε)/ε2) in the setting β = 1. When β < 1,
this estimator dramatically outperforms the above “regular” multilevel method
since it only differs from a (virtual) unbiased simulation (when M = 2) by a fac-

tor exp(
1−β
α

√
log(2) log(1/ε)/2)= o(ε−η),∀η > 0, instead of ε

β−1
α with MLMC.
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The underlying idea for this weighted multilevel method is to combine the multi-
level paradigm with the multistep Richardson–Romberg extrapolation introduced
in [18] in its modern form but which historical form goes back to [25, 26] and has
been extensively used in the Monte Carlo literature.

We refer to [16] for more precise results and proofs.
The aim of this paper is to transpose the weighted multilevel paradigm to the

Langevin Monte Carlo simulation with decreasing step described above, with the
issue that, in contrast with regular Monte Carlo simulation, canceling the bias
terms directly impacts the rate of convergence of the method by enlarging the
range of step parameters for which a CLT holds at rate

√
�n to coarser steps

(so that �n goes faster to infinity where the stationary regime takes places). So
we will adapt the ML2R estimator to the occupation measure ν

γ
n = ν

γ,γ
n intro-

duced before. Like in the regular Monte Carlo setting, we introduce, for a function
f , a weighted estimator involving νn(f ) and some correcting terms denoted by
μ

(r,M)
n (f ), r = 1, . . . ,R based on some pairs of coupled refined schemes [see (2.3)

for details]. Since the ergodic estimation of the invariant measure is based on only
one path, the idea here is to replace the allocation policy of realizations N1, . . . ,NR

of the ML2R method by a sizing policy q1, . . . , qR of the length of the coarse path
[involved in νn(f )] and those of the correcting sequences μ

(r,M)
n (f ).

In order to asymptotically kill the successive terms of the bias induced by
the estimator, we will need some asymptotic expansions of νn(f ) and μ

(r,M)
n (f )

such as (2.4) and (2.5) below. These expansions, which require the invertibility of
the infinitesimal generator (or equivalently the existence of solutions to the Pois-
son equation) can be viewed as the counterpart of the weak error/bias expansion
E[f (XT )] −E[f (X̄T )] in finite horizon.

As for the strong convergence rate used to control the variance of the corrective
terms of multilevel estimators, its counterpart in our ergodic setting will require a
contraction-type assumption [see (Cw) and (Cs) below], which guarantees a mean
confluence result between the diffusion and its Euler scheme with decreasing step
of the following form:

1

�n

n∑
k=1

γk|X�k
− X̄k|2 n→+∞−−−−→ 0 a.s. as n→+∞.

It says that the (γ, γ )-empirical measure of the couple (X, X̄) concentrates on
the diagonal of Rd . Furthermore, under Assumption (Cs), the rate of concentra-
tion on the diagonal can be quantified leading to a long-time setting roughly corre-
sponding to the case β = 2 (even with the Euler–Maruyama scheme). Such proper-
ties hold in particular when the diffusion itself is exponentially confluent (typically
like a mean-reverting Ornstein–Uhlenbeck process) as it is the case under Assump-
tion (Cs).

The methods of proof heavily rely on limit theorems for martingale borrowed
from stability theory for nonhomogeneous discrete time Markov chains (see,
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e.g., [4]) and radically differ from those used to analyze multilevel methods in
finite horizon. For convenience, we will work in one dimension, but the extension
to the multidimensional setting would be essentially a matter of notation.

Outline of the paper and main results. The paper is organized as follows. We
begin by introducing precisely the weighted empirical sequence built for the esti-
mation of the invariant measure, called ML2Rgodic and denoted by ν̃R,W

n . Then
our main results are divided in three parts. In Theorem 2.1, we obtain some CLTs
for ν̃R,W

n : we show that the ML2Rgodic-Algorithm with R − 1 levels of correc-

tions and an appropriate sequence (γn)n≥1 has an optimal rate of order n
R

2R+1 with
an asymptotic variance which is the same as the one of the original procedure.
Then, in view of the optimization of the choices of the parameters, we exhibit
in Theorem 2.2 some first- and second-order asymptotic expansions of the mean-
squared error. Based on this result, we proceed to the optimization in Theorem 2.3
and provide some choices of the parameters involved by the algorithm which lead
to a complexity of order ε−2 log(1

ε
) (instead of ε−3 for the original procedure).

The main tools to establish Theorems 2.1 and 2.2 appear in Sections 3 and 4. Then
the proofs of Theorems 2.1, 2.2 and 2.3 are achieved in Section 5. In Section 6,
we carry out several numerical experiments, first on an Orsnstein–Uhlenbeck toy
model, then on more involved diffusion related to a double-well potential and
finally on a statistical example (sparse regression learning inspired by [3]). Fi-
nally, in Section 7, we briefly compare with a more classical multilevel method
based on finite horizon simulations combined with a convergence of (Xt)t≥0 to-
ward its invariant distribution (at an exponential rate), close in spirit to that re-
cently introduced in [29] [in which a complexity at the order of ε−2(log(1

ε
))3 is

attained].

2. The Multilevel-Romberg Ergodic (ML2Rgodic) procedure.

2.1. Design of the ML2Rgodic Langevin estimator. We aim at adapting the
multilevel paradigm to devise an ergodic estimator for the approximation of the
invariant distribution. For a given integer R ≥ 2, the idea is to modify the original
procedure with the aim to kill the R first terms of the expansion of the discretiza-
tion error without impacting too much the simulation cost of simulation.

Let γ = (γn)n≥1 be a sequence of steps, and M and R be two integers such that
R ≥ 2 and M ≥ 2. First, we consider an Euler scheme X̄(1) = X̄ with decreasing
step γ associated to a standard Brownian motion W(0) =W . We associate to this
scheme R − 1 independent coupled schemes (X̄(r), Ȳ (r,M)), r = 2, . . . ,R, inde-
pendent of X̄(0) where:

• X̄(r) is an Euler scheme with decreasing step γ (r,M) = γ

Mr−2 (so that γ (2,M) = γ )

associated to a Brownian motion W(r).
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• Ȳ (r,M) is a refined Euler scheme with decreasing step γ̃ (r,M) associated to the
same Brownian motion W(r) where

(2.1) ∀m ∈ {1, . . . ,M} γ̃
(r,M)
M(n−1)+m =

γ
(r,M)
n

M
= γn

Mr−2 , n≥ 1.

Set, for every integers �≥ 1 and r ≥ 2,

(2.2) �(�,r)
n =

n∑
k=1

(
γ

(r,M)
k

)� =M−(r−2)�
n∑

k=1

γ �
k =M−(r−2)��(�)

n ,

where �
(�)
n = �

(�,2)
n =∑n

k=1 γ �
k . Note that �

(�)
n = �

(�,2)
n .

Then we define for every r = 2, . . . ,R the sequence of difference of the empir-
ical measures of the two schemes by

μ(r,M)
n (dx)

= 1

�
(1,r)
n

n∑
k=1

((
M−1∑
m=0

γ̃
(r)
M(k−1)+mδ

Ȳ
(r)
M(k−1)+m

)
− γ

(r)
k δ

X̄
(r)
k−1

)
, n≥ 1

= 1

�
(1,r)
n

n∑
k=1

γn

Mr−2

(
1

M

M−1∑
m=0

δ
Ȳ

(r)
M(k−1)+m

− δ
X̄

(r)
k−1

)
, n≥ 1.

(2.3)

The expected weak limit of μ
(r,M)
n (f ) is 0 as a difference of occupation measures

of two Euler schemes with decreasing step. Thus, this empirical measure plays the
role of a correcting term.

Now, let q1, . . . , qR denote some positive real numbers, called re-sizers from
now on, satisfying

∀r ∈ {1, . . . ,R}, 0 < qr < 1, q1 + · · · + qR = 1,

and, for a given integer n≥ 1, set

nr = �qrn�, r = 1, . . . ,R.

Let f : Rd → R be a smooth function, coboundary for the infinitesimal genera-
tor L [existence of solutions to the Poisson equation f − ν(f ) = L(g)]. Under
some appropriate assumptions (including weak confluence), we can prove in a
sense made precise later on [see Propositions 3.1(b) and 3.2(b)] that the sequences
(νn1(f ))n≥1 and (μ

(r,M)
nr (f ))n≥1 satisfy the following asymptotic generic type-

expansions:

νn1(f ) = ν(f )+
R+1∑
�=2

�
(�)
n1

�n1

ν(��)+ Mn

�n

(2.4)

+ o

(
1√
�n1

∧ �
(R+1)
n1

�n1

)
,
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μ(r,M)
nr

(f ) =
R+1∑
�=2

M(r−2)(1−�)(M1−� − 1
)�(�)

nr

�nr

ν(��)

(2.5)

+ o

(
1√
�nr

∧ �
(R+1)
nr

�nr

)
,

where (Mn)n≥1 is a martingale and (��)�≥1 is a sequence of functions made pre-
cise further on. At this stage, the reader can remark that there is no martingale term
in the main part of the second expansion. This point, which is strongly linked with
the weak confluence assumption (Cw) introduced below, can be understood as fol-
lows: the martingale term induced by μ

(r,M)
n is asymptotically negligible against

the one of νn1(f ). In a rough sense, this means that if we build an appropriate
combination of νn1(f ) and μ

(r,M)
nr (f ), r = 1, . . . ,R, we will be able to kill the

bias error without growing the asymptotic variance. But a numerical computation
holds in a finite (nonasymptotic) setting so that this heuristic needs to be refined
in practice. One of the objectives of the paper is thus to go deeper in the study of
the expansion in order to be able to propose an efficient and potentially optimized
method of approximation of the invariant distribution.

REMARK. Variants in the definitions of the schemes are possible. Thus, an
alternative to the independence of the levels is to make the two schemes of each
level (the coarse and the fine one start from the terminal value of the fine scheme
of the former level and, for the second level, from the terminal value of the coarse
scheme). Doing so, one only needs the increments of a single underlying Brownian
motion in the spirit of the original Langevin Monte Carlo simulation. However, it
turns out that the theoretical computation the asymptotic variance of the resulting
multilevel estimator—on which is based the optimization of its design—seems less
tractable.

THE ML2RGODIC-ALGORITHM. As mentioned before, the first step toward
our ML2Rgodic estimator is to design an appropriate combination of the formerly
defined empirical measures in order to “kill” the bias. Furthermore, we require that
this combination does not depend upon the size n of the estimator. We thus define
a sequence of empirical measures denoted by (̃ν

(R,W)
n )n≥1 by

(2.6) ν̃(R,W)
n =W1νn1 +

R∑
r=2

Wrμ
(r,M)
nr

, n≥ 1,

where W = (Wr )
R
r=1 is a sequence of real numbers. For the sake of simplicity,

we do not mention the dependency of ν̃
(R,W)
n in M and γ . Also, let us remark

that the weights Wr clearly depend on R and will sometimes be denoted W(R)
r

in order to recall this dependence when necessary. Let us now specify W. First,



WEIGHTED MULTILEVEL LANGEVIN SIMULATION 3369

by (2.4) and (2.5), one remarks that it is necessary to assume that W1 = 1 in order
to ensure the convergence toward ν.

Let us now consider the construction of W2, . . . ,WR . To this end, we consider
from now on step sequences with polynomial decay

(2.7) γk = γ1k
−a with γ1 > 0, a ∈ (0,1).

Then by plugging the expansions of the bias resulting from (2.4) and (2.5) in the
definition (2.6) of the ML2Rgodic estimator we derive that

E
(̃
ν(R,W)
n

)=W1Eνn1(f )+
R∑

r=2

WrEμ(r,M)
nr

(f )

=W1ν(f )+
R+1∑
�=2

[
W1

�
(�)
n1

�n1

+
R∑

r=2

WrM
(r−2)(1−�)(M1−� − 1

)�(�)
nr

�nr

]
ν(��)+ o

(
�

(R+1)
n

�n

)

≈W1ν(f )+
R+1∑
�=2

�
(�)
n

�n

ν(��)

[
W1q

−a(�−1)
1

+
R∑

r=2

WrM
(r−2)(1−�)(M1−� − 1

)
q−a(�−1)
r

]
+ o

(
�

(R+1)
n

�n

)
,

where the notation ≈ is used to keep in mind that one implicitly assumes that
�

(�)
nr

�nr
−q
−a(�−1)
r

�
(�)
n

�n
is negligible (see further on the proof of Theorems 2.1 and 2.2).

Then as soon as the weights (Wr )1≤r≤R are solutions to the linear system: W1 = 1
and

(2.8)

∀� ∈ �2,R�

W1q
−a(�−1)
1 + (

M1−� − 1
) R∑
r=2

WrM
−(r−2)(�−1)q−a(�−1)

r = 0,

the bias is “killed” up to order R and reads

E
(̃
ν(R,W)
n

)≈ 1− a

1− a(R + 1)
γ R

1 ν(�R+1)W̃R+1n
−aR + o

(
�

(R+1)
n

�n

)
,

where we set, more generally,

(2.9)

W̃R+i =W1q
−a(R+i)
1

+ (
M−R−i+1 − 1

) R∑
r=2

WrM
−(r−2)(R+i−1)q−a(R+i)

r , i ≥ 0.
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The main difference at this stage with the regular weighted multilevel estimator
is that these weights depend on the re-sizers qr which will make a complete opti-
mization of these allocation parameters out of reach.

In the following lemma, the linear system (2.8) is solved. In short, it shows that
the weights are uniquely defined provided the re-sizers qr satisfy qr

Mr/a �= qs

Ms/a ,
s �= r . Note that these weights depend on the exponent a [and the (qr)] but not on
γ1.

Another important point is that, by contrast with the regular weighted multilevel
Monte Carlo setting, this system in its general form is not a regular Vandermonde
system though it shows some similarities. In fact, it can be related to a sequence
of (R − 1)× (R − 1)-Vandermonde systems with closed solutions. A notable ex-
ception to this situation occurs in the very special of uniform re-sizers qr = 1

R
,

r = 1, . . . ,R where we retrieve exactly the weights of the regular Monte Carlo
ML2R introduced in [16]. For a given depth R > 1, the closed form of (Wi )

R
i=2

(keeping in mind that W1 = 1) is given by the following lemma.

LEMMA 2.1. (a) General re-sizers: If q := (q1, . . . , qR) ∈ SR := {(x1, . . . ,

xR) ∈ (0,+∞)R,
∑R

i=1 xi = 1} and satisfies qr

Mr/a �= qs

Ms/a , s �= r , then the above
system (2.8) has a unique solution given by

(2.10)
W(R)

r =Mr−2
(

qr

q1

)a ∑
k≥0

1

Mk

R∏
s=2,s �=r

1−Ms−2−k(qs/q1)
a

1−Ms−r (qs/qr)a
,

r = 2, . . . ,R.

Moreover, the coefficients W̃(R)
R+i , i = 1,2, as defined in (2.9) read

(2.11) W̃(R)
R+1 =

(1−M−R)

qaR
1

∑
k≥0

1

MkR

R−2∏
r=0

(
1−Mk−r

(
q1

qr+2

)a)

and

(2.12)

W̃(R)
R+2 =

1−M−R−1

q
a(R+1)
1

∑
k≥0

(1+∑R−2
r=0 Mk−r (

q1
qr+2

)a

Mk(R+1)

)

×
(

1+
R−2∏
r=0

(
1−Mk−r

(
q1

qr+2

)a))
.

(b) Uniform re-sizers: If qr = 1
R

, r = 1, . . . ,R, the following simpler closed

form holds for the weights W(R)
r :

(2.13) W(R)
r =w(R)

r + · · · +w(R)
R , r = 1, . . . ,R
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with

(2.14)

w(R)
r =

R∏
s=1,s �=r

M−(s−1)

M−(s−1) −M−(r−1)

=
R∏

s=1,s �=r

1

1−Ms−r
, r = 1, . . . ,R.

The weights WR
r are uniformly bounded, that is, supr∈�1,R�,R≥1 |W(R)

r | < +∞.
Furthermore,

(2.15)
(
W̃(R)

R+1,W̃(R)
R+2

)= (−1)R−1RaRM−
R(R−1)

2

(
1,−Ra 1−MR

1−M−1

)
.

The proof is postponed to [21], Section 1.

EXAMPLES. • R = 2: W(2)
1 = 1, W(2)

2 = M
M−1(

q2
q1

)a .
• R = 3:

(
W(3)

2 ,W(3)
3

)= M

M − 1

((
q2

q1

)a 1− M2

M+1(
q3
q1

)a

1−M(
q3
q2

)a
,

(
q3

q1

)a 1− M2

M+1(
q2
q1

)a

1−M−1(
q2
q3

)a

)
.

When there is no ambiguity, the superscript (R) will be dropped in the nota-
tion W(R), w(R)

r and W(R)
R+1. In the sequel, ν̃

(R,W)
n will be always defined with W

satisfying (2.8) or (2.10).

ASSUMPTIONS. We introduce below the assumptions for the first theorem. As
recalled in the Introduction, the study of the rate of convergence brings into play
the Poisson equation related to the SDE. In this paper, where we are going deeper
in the expansion of the error, we will need to use it successively. For the sake of
simplicity, we thus assume the following (strong) assumption:

(P) For every C∞ function f , there exists a unique (up to an additive constant)
C∞-function g, such that f − ν(f ) = −Lg. Furthermore, if f is a function
with polynomial growth, then g also is.

For instance, it can be shown that, when σ is bounded and uniformly elliptic
[in the sense that (σσ ∗(x)x|x) ≥ λ0|x|2 for some λ0 > 0], when Assumption (S)

is in force and f , b and σ are smooth have polynomial growth as well as their
derivatives, then (P) holds true. Actually, we first recall that under the ellipticity
and Lyapunov assumptions, the semi-group converges exponentially fast toward ν

(in total variation) so that g(x) = ∫∞
0 Psf (x)− ν(f ) ds is well defined and it is

classical background that g is the unique (up to a constant) solution to the Poisson
equation f − ν(f ) = −Lg (see, e.g., [23]). Then, by [7], Theorem 6.17, under
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uniform ellipticity, g is in fact C∞ as soon as f , b and σ are. The polynomial
growth of g and ∇g has been proved in [23], Theorem 1. The property is obtained
through the a priori estimate, see equation (9.40) in [7], which in fact also holds for
D2g. Then we can establish by induction that all the partial derivatives of g have a
polynomial growth. Assume it is true up to order k. First, note that u= ∂i1,...,ik−1g

is a solution to Lu = −fg where fg is a function which depends on f , b and σ

and their first-order partial derivatives and some derivatives of g up to order k.
Hence, fg has polynomial growth and the a priori error bound (9.40) in [7] for the
second-order partial derivatives of u yields the polynomial growth of the partial
derivatives ∂i1,...,ik+1g.

The second additional assumption has been introduced in [20] and deeply stud-
ied [17]: it requires the diffusion to be weakly confluent, that is, two paths of the
diffusion, with different initial values, but driven by the same Brownian motion,
asymptotically cluster in a weak (or statistical) sense as follows: let (Xt , Yt )t≥0 be
the duplicated diffusion (or two-point motion) associated with the diffusion (SDE)
by

(2.16)

{
dXt = b(Xt) dt + σ(Xt) dWt,

dYt = b(Yt ) dt + σ(Yt ) dWt,

where X0, Y0 are two starting values independent of W . If ν is an invariant dis-
tribution for (SDE), ν� := ν ◦ (x �→ (x, x))−1 is trivially invariant for the couple
(X,Y ). The diffusion (SDE) is said weakly confluent if ν� is the only invariant dis-
tribution for (X,Y ) [which implies implicitly that ν itself is the unique invariant
distribution of (SDE)]. In the sequel, this assumption is referred to as

(Cw) (SDE) is weakly confluent.

REMARK 2.1. � Under slight additional assumptions on the stability of
(SDE), it can be shown (see [17]) that, if (Cw) holds, the diffusion is statistically
confluent in the sense that

1

t

∫ t

0
δ(Xs,Ys) ds

(R2d )=⇒ ν� a.s. as t→+∞.

� For the empirical measure ν̃
(R,W)
n , the role of (Cw) is to ensure that the empir-

ical measures μr,L
n , built with some differences of schemes X̄

(r)
n and Ȳ

(r)
n have a

negligible asymptotic variance (with respect to that of νn). This property will be
made precise in Section 4.

We are now in position to state the first main theorem.

THEOREM 2.1 (CLT). Assume (S), (P) and (Cw). Let (R,M) ∈ (N∗ \ {1})2

and let (Wr )1≤r≤R denote the R-tuple of weights defined by (2.10). Let q =
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(qr)1≤r≤R ∈ SR be an R-tuple of re-sizers satisfying qr

Mr �= qs

Ms , s �= r . Let γn =
γ1n
−a , n ∈ N

∗, a ∈ (0,1/R), be a discretization step sequence. Let f : Rd → R

be a C∞-function and denote by g the solution to f − ν(f ) = −Lg. Let W =
(Wr )r=1,...,R be defined by (2.10).

(a) If a ∈ ( 1
2R+1 , 1

R
), then

n
1−a

2

(
ν̃(R,W)
n (f )−

∫
R

f dν

)
(R)=⇒N

(
0;σ 2

f (a, q,R)
)

as n→+∞
with

(2.17) σ 2
f (a, q,R)= 1− a

γ1

σ 2
1 (f )

q1−a
1

with σ 2
1 (f )= ν

(∣∣σ ∗∇g
∣∣2).

(b) If a = 1
2R+1 , the CLT holds at an optimal rate toward a biased Gaussian

distribution, namely

n
R

2R+1

(
ν̃(R,W)
n (f )−

∫
Rd

f dν

)
(R)=⇒N

(
mf (q,R);σ 2

f (q,R)
)

as n→+∞

with σ 2
f (q,R) := σ 2

f ( 1
2R+1 , q,R) and mf (q,R) := 2γ R

1 W̃R+1cR+1 where W̃R+1
is given by (2.9) and cR+1 = ν(�R+1), �R+1 being a C∞-function with polynomial
growth [whose explicit expression in the one-dimensional case is given by (3.4)].

(c) If a ∈ (0, 1
2R+1), then

naR

(
ν̃(R,W)
n (f )−

∫
R

f dν

)
P−→mf (a, q,R) as n→+∞

with

(2.18) mf (a, q,R) := 1− a

1− a(R + 1)
γ R

1 W̃R+1cR+1.

REMARK 2.2. Note that the definitions of mf (a, q,R) and mf (q,R) in the
above claims (b) and (c) are consistent since mf (q,R)= mf (a, q,R) when a =

1
2R+1 .

REMARK 2.3. It is worth noting that in this long run setting where we
manage jointly Monte Carlo, long-time and discretization errors, the interest of
ML2Rgodic and especially of the multilevel Richardson–Romberg strategy is to
increase the order of the rate of convergence of the procedure. In particular, such a
property would not be satisfied with a MLMC alternative.

From an asymptotic point of view, the above result says in particular that when

R grows, the optimal rate of convergence tends to n
1
2 without increasing the

(asymptotic) variance. However, from a nonasymptotic point of view, one has cer-
tainly to go deeper in the result to try to optimize the choice of the parameters.
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This implies to take into account the effect of the choice of q, M and R on the
residual bias term, the variance and on the computational cost. This is the purpose
of the next paragraph.

L2-expansions of the error. The aim of this part is to study the quadratic error to
prepare the optimization of the parameter of the multilevel estimator (a, q,R,n)
algorithm subject to a prescribed quadratic error ε > 0. To this end, we will not
only provide a reformulation of Theorem 2.1 in quadratic norm, we will also go
deeper in the study of the asymptotic error. In particular, in the previous result, the
variance induced by the correcting terms μR,M

n does not appear and we would like
to quantify it. We will also need to control the residual error terms not only in n

but also with respect to the depth R, since this parameter is intended to go to +∞
in the optimization phase. This will lead us to carry out the expansion to the order
R+ 2 and not R or R+ 1 like in the above theorem and to introduce a second and
more constraining confluence assumption denoted by (Cs):

(Cs) There exists α > 0 and a positive matrix S such that for every x, y ∈Rd ,(
b(x)− b(y)|x − y

)
S +

1

2

∥∥σ(x)− σ(y)
∥∥2
S ≤−α‖x − y‖2

S,

where (·|·)S and by | · |S stand for the inner product and norm on R
d defined

by (x|y)S = (x|Sy) and |x|2S = (x|x)S , and for A ∈M(d, d,R), ‖A‖2
S =

Tr(A∗SA).

Furthermore, to get closer to practical aspects, we only consider the optimal
case a = ā = 1/(2R + 1) which clearly provides the highest possible rate of con-
vergence for a given complexity. Finally, we will focus on the uniform re-sizing
vector qr = 1

R
, r = 1, . . . ,R. They turn out to be most likely rate optimal and, as

emphasized in Remark 2.1 of [21], in that case the first term of the bias of the
ML2Rgodic estimator does vanish whereas for other choices of vectors q a resid-
ual bias [at rate O(n−1−ā)] still remains. Though theoretically negligible, it turns
out to have a strong numerical impact on simulations.

THEOREM 2.2 (Mean squared error for a = ā = 1
2R+1 ). (a) Suppose that the

assumptions of the previous theorem hold and let a = 1
2R+1 . Then∥∥ν̃(R,W)

n (f )− ν(f )
∥∥2

2 = n−
2R

2R+1
(
σ 2

f (q,R)+m2
f (q,R)+ o(1)

)
as n→+∞.

(b) If, furthermore, (Cs) holds∥∥ν̃(R,W)
n (f )− ν(f )

∥∥2
2 = n−

2R
2R+1

(
σ 2

f (q,R)+m2
f (q,R)

)
+ 1

n

(
σ̃ 2

f (q,R)+ m̃f (q,R)+ o(1)
)

as n→+∞,

where, on the one hand

(2.19) σ̃ 2
f (q,R)= 1

q1
σ 2

2,1(f )+
(

1− 1

M

)
�(R,M)σ 2

2,2(f )
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with

(2.20) �(R,M)= 4R2

4R2 − 1

R∑
r=2

(
W(R)

r

)2

and σ 2
2,1(f ) and σ 2

2,2(f ) are some variance terms explicitly defined further on
by (4.1) and (4.4) in Propositions 4.1 and 4.2, respectively. On the other hand,
m̃f (q,R) is given by

m̃f (q,R)= 8R

R − 1
cR+1cR+2γ

2R+1
1 W̃(R)

R+1W̃(R)
R+2.

(c) If furthermore the re-sizers are uniform, namely qr = q̄r = 1
R

, r = 1, . . . ,R,

then the weights W(R)
r are given by (2.14) and W̃(R)

R+1 and W̃(R)
R+2 by (2.15) so that

(2.21) m̃f (q̄,R)=− 4R

R − 1
cR+1cR+2γ

2R+1
1 RM−R(R−1) 1−M−R

1−M−1 .

2.2. Optimization procedure. It remains to optimize the parameters to min-
imize the complexity of the estimator for a given prescribed mean square error
(MSE). In view of the above Theorem 2.1, it is clear that the parameter a should
be settled at a = ā = 1

2R+1 . We thus start from Theorem 2.2(b) with

a = ā = 1

2R + 1
and qr = q̄r := 1

R
, r = 1, . . . ,R.

Then the weights Wr , r = 1, . . . ,R and W̃R+1 are given by (2.14) and (2.15)
(those coming out in standard multilevel Monte Carlo, e.g., in the case of the ap-
proximation of a diffusion by its Euler scheme).

We denote by � = (R, γ1, n,M) ∈�=N
∗ × (0,+∞)×N

∗ ×N
∗ the remain-

ing set of free simulation parameters that we wish to optimize. With this specifica-
tion for a and the allocation vector q̄ , the MSE(�) reads

(2.22)

∥∥νR,W
n − ν(f )

∥∥2
2 =

1

n
2R

2R+1

(
σ 2

f (ā, q̄,R)+m2
f (ā, q̄,R)

)
+ 1

n

(
σ̃ 2

f (ā, q̄,R)+ m̃f (q,R)+ o(1)
)

as n goes to∞ where, owing to (2.18), (2.21), (2.17) and (2.19),

mf (ā, q̄,R)= 2γ R
1 (−1)R−1R

R
2R+1 M−

R(R−1)
2 cR+1,

m̃f (q̄,R)=− 8R

R − 1
cR+1cR+2γ

2R+1
1 RM−R(R−1) 1−MR

1−M−1 ,

σ 2
f (ā, q̄,R)= 2R

2R + 1
R

2R
2R+1 σ 2

1 (f )γ−1
1 ,

σ̃ 2
f (ā, q̄,R)= R

[
σ2,1(f )2 +

(
1− 1

M

)
�(R,M)σ 2

2,2(f )

]
.
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On the other hand, the complexity K(�,n,M) of the multilevel Langevin estima-
tor devised in (2.6) reads

K(�,n,M)= n
(
q1 + (M + 1)(q2 + · · · + qR)

)
κ0

= n
(
1+M(1− q1)

)
κ0

= n

(
1+M

(
1− 1

R

))
κ0,

where κ0 denotes the unitary computational cost of one iteration of an Euler
scheme.

To calibrate the above parameter � , we want to minimize the complexity sub-
ject to a prescribed RMSE ε > 0, that is, solving the constrained optimization prob-
lem:

inf
MSE(�)≤ε2

K(�).

To state the main result of this section, whose proof is postponed to Section 5,
we need to introduce a function related to the weights W(R)

r and on the depth of
the simulation. We know from Lemma 2.1(c) that (W(R)

r )1≤r≤R,R≥2 is uniformly
bounded. Consequently, M being fixed, �(R,M)=O(R) as R→+∞ [where �

is defined by (2.20)]. This leads us to define

(2.23) �(M)= sup
R≥1

�(R,M)

R
.

We refer to Table 2 for some numerical values of � and � .

THEOREM 2.3. Under the assumptions of Theorem 2.2, and if, furthermore,
limR→+∞ 1

R
| cR+1

cR
| = 0 and |cR| 1

R → c̃ ∈ (0,+∞), then

(a)

inf
MSE(�)≤ε2,�∈�

K(�) �K(f,M).ε−2
(

log
(

1

ε

))
as ε→ 0,

where

(2.24) K(f,M)= 2κ0(M + 1)

logM

(
(M − 1)�(M)

c̃θ1(f )
+ 1

)
c̃σ 2

1 (f )

with θ1(f )= σ 2
1 (f )

σ 2
2,2(f )

.

(b) The above bound can be achieved by the (sub)optimal � ∗ given by q∗ = 1
R

,
R∗ = R(ε,M)= �x(ε,M)� where x(ε,M) is the unique solution to the equation
log(M)

2 x(x − 1)+ x logx + log(ε)= 0 and

γ ∗(ε,M)=
(

2R

2R + 1

) 1
2R+1

(8R)−
1

2R+1 |cR+1|− 2
2R+1 σ 2

1 (f )
1

2R+1 M
R(R−1)
2R+1 .
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TABLE 1
Values of x(ε,M)

ε = 10−1 ε = 10−2 ε = 10−3 ε = 10−4

M = 2 2.08 2.79 3.38 3.89
M = 3 1.94 2.56 3.06 3.50
M = 4 1.87 2.44 2.90 3.30

Furthermore, as ε→ 0,

x(ε,M)=
√√√√2 log(1

ε
)

logM
− log(2)(

1
ε
)

2 logM
+ 1

2
+ log(logM)− log 2

2 logM
+O

( log(2)(1/ε)√
log(1/ε)

)
,

and the (minimal) number of iterations n(ε,M) necessary to attain an MSE lower
than ε2 satisfies

(2.25) n(ε,M)� 2

logM

(
(M − 1)�(M)

c̃θ1(f )
+ 1

)
σ 2

1 (f )ε−2 log
(

1

ε

)
as ε→ 0.

REMARK 2.4. Though difficult to check in practice, note that the assumptions
on the sequence (cr)r≥1 are satisfied as soon as

lim
R→+∞

∣∣∣∣cR+1

cR

∣∣∣∣= c̃ ∈ (0,+∞).

REMARK 2.5. Note that the choice of R(ε,M) does not depend on the pa-
rameters. In Table 1, we give the values of x(ε,M) for several choices of M and ε.
As expected, one can check that R(ε,M) increases very slowly when ε decreases.

REMARK 2.6. A remarkable point to be noted is that we retrieve the same
asymptotic rate as that obtained with the original ML2R Monte Carlo simulation
at finite horizon, that is, for the computation of expectations Ef (XT ) where X =
(Xt)t∈[0,T ] is a standard diffusion discretized by its Euler scheme.

Practical aspects are investigated in the practitioners’ corner (see Section 6.1)
especially how to calibrate the parameters which are involved in the definition
of � ∗.

3. Expansion of the error. For the sake of simplicity, the proofs are detailed
in dimension 1. In the following subsections, we begin by decomposing the quan-
tity ν

γ,η
n (f )− ν(f ) for a given smooth coboundary function f (i.e., such that the

Poisson equation f − ν(f )=−Lg has a smooth enough solution) and for a gen-
eral weight sequence (ηn). Then, in the next subsections, we successively propose
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some expansions of the error, ν
γ
n (f )− ν(f ) for the original sequence (ν

γ
n (f ))n≥1

(implemented on the coarse level) and for the sequences of correcting empirical
measures (μ

(r,M)
n (f )) for r = 2, . . . ,R defined in (2.3) and corresponding to the

successive refined levels of our estimator.
Note that by expansion, we mean an expansion of the bias of our estimators

(level by level then globally) until we reach an order at which we reach a martin-
gale term involved in the weak rate of convergence.

3.1. Higher order expansion of ν
γ
n (f )−ν(f ) (coarse level). For every integer

n≥ 1, for every sequence (vn)n≥1, we set �vn = vn − vn−1. We will also use the
following notation:

Un = γ
− 1

2
n (W�n − �n−1)

d=N (0; Iq) and ρm = E
[
Um

1
]
, m ∈N.

LEMMA 3.1. Let L ∈ N. Assume that f − ν(f )=−Lg where g is a C2L+3-
function. Then, for every integer n≥ 1,

�g(X̄n)=−γn

(
f (X̄n−1)− ν(f )

)+ [
L+1∑
�=2

γ �
nϕ�(f )(X̄n−1)

]

+
3∑

i=1

�M(i,g)
n +�R

(1,g)
n,L +�R

(2,g)
n,L +�R

(3,g)
n,L ,

(3.1)

where, setting Is = {(m1,m2) ∈N2,m1 + m2
2 = s},

ϕ�(f )(x)=∑
I�

g(m1+m2)(x)
ρm2

m1!m2!b
m1(x)σm2(x),

�M(1,g)
n =√γn

(
g′σ

)
(X̄n−1)Un,

�M(2,g)
n = 1

2
γng

′′(X̄n−1)σ
2(X̄n−1)

[
U2

n − 1
]
,

�M(3,g)
n = γ

3
2

n

(
1

2
g′′(X̄n−1)b(X̄n−1)σ (X̄n−1)Un

+ 1

6
g(3)(X̄n−1)σ

3(X̄n−1)U
3
n

)
,

�R
(1,g)
n,L =

2L+1∑
�=2

γ
�+ 1

2
n

∑
I

�+ 1
2

g(m1+m2)(X̄n−1)
1

m1!m2!b
m1(X̄n−1)σ

m2(X̄n−1)U
m2
n

+
2L+1∑
�=2

γ �
n

∑
I�

g(m1+m2)(X̄n−1)
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× 1

m1!m2!b
m1(X̄n−1)σ

m2(X̄n−1)
[
Um2

n − ρm2

]
,

�R
(2,g)
n,L =

2L+2∑
�=L+2

γ �
n

∑
I�

g(m1+m2)(X̄n−1)
ρm2

m1!m2!b
m1(X̄n−1)σ

m2(X̄n−1),

�R
(3,g)
n,L = g(2L+3)(ξn)

(
γnb(X̄n−1)+√γnσ(X̄n−1)Un

)2L+3
,

ξn ∈ [X̄n−1, X̄n].
As a consequence,

(3.2)

νη,γ
n (f )− ν(f )

=− 1

Hn

n∑
k=1

ηk

γk

�g(X̄k)+
L+1∑
�=2

∑n
k=1 ηkγ

�−1
k

Hn

νηγ �−1,γ
n

(
ϕ�(f )

)

+ 1

Hn

n∑
k=1

ηk

γk

( 3∑
i=1

�M
(i,g)
k +�R

(1,g)
k,L +�R

(2,g)
k,L +�R

(3,g)
k,L

)
.

PROOF. By the Taylor formula with order 2L+ 2, we have for every x and y

in R
d ,

g(x + y)− g(x)=
2L+2∑
�=1

1

k!g
(k)(x)yk + g(2L+3)(ξ)y2L+3,

where ξ ∈ [x, x + y]. Then, if y = γ b(x)+√γ σ(x)u with u ∈Rd ,

1

k!y
k = ∑

m1+m2=k

1

m1!m2!γ
m1+m2

2 bm1(x)σm2(x)um2 .

The decomposition of �g(x) easily follows by separating odd and even m2 and by
remarking that

g′(x)y + 1

2
g′′(x)y2 =−γLg(x)+√γ σ(x)u+ 1

2
γ σ 2(x)

(
u2 − 1

)
+ 1

2
g′′(x)

(
γ 2b2(x)+ 2γ

3
2 σ(x)u

)
.

Since

νη,γ
n (f )− ν(f )= 1

Hn

n∑
k=1

ηk

γk

(
γk

(
f (X̄k−1)− ν(f )

))
,

the second part of the lemma is a direct consequence. �

For notational convenience, we will denote by Qf in what follows the solu-
tion of the Poisson equation f − ν(f )=−L(Qf ) satisfying ν(Qf )= 0. [Under
Assumption (P), Qf is well defined.]
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DEFINITION 3.1. (a) Under Assumption (P), one may define a mapping
ϕ
[1]
� (·) from C∞(R,R) into itself defined for every f ∈ C∞(R,R) by

(3.3) ϕ
[1]
� (f )(·)= ∑

(m1,m2),m1+m2
2 =�

ρm2

m1!m2!b
m1(·)σm2(·)(Qf )(m1+m2)(·),

where h(k) denotes the kth derivative of a function h. Then, for every � ∈ N, one
sets ϕ

[m]
� = ϕ

[m−1]
� ◦ ϕ

[1]
� . To alleviate notation, we will often write ϕm(f ) instead

of ϕ[1]m (f ) in what follows.
(b) Still under Assumption (P), we define the mappings ��, � ∈N∗,

(3.4) �� =
�−1∑
k=1

∑
(m1,...,mk)∈�2,��k,

m1+···+mk=�+k−1

ϕm1 ◦ · · · ◦ ϕmk
.

For example, note that

�2 = ϕ2, �3 = ϕ3 + ϕ
[2]
2 and �4 = ϕ4 + ϕ3 ◦ ϕ2 + ϕ2 ◦ ϕ3 + ϕ

[3]
2 .

We have the following expansions of the error, depending on the averaging prop-
erties of the step sequence γ .

PROPOSITION 3.1 (Bias error expansion for the coarse level). Assume (S),
(P) (and uniqueness of the invariant distribution ν). Let R ∈ N, R ≥ 2 and let
f ∈ C∞(R,R) with polynomial growth and g =Qf .

(a) If (γ �
n , γn)n≥1 is averaging for every � ∈ {1, . . . ,R},

νγ
n (ω,f )− ν(f )−

R∑
�=2

�
(�)
n

�n

ν
(
��(f )

)= M
(1,g)
n

�n

+ oL2

(√
�n ∨ �

(R)
n

�n

)
.

(b) If, furthermore, the pair (γ R+1
n , γn)n≥1 is averaging

νγ
n (ω,f )− ν(f )−

R∑
�=2

�
(�)
n

�n

ν
(
��(f )

)= M
(1,g)
n

�n

+ �
(R+1)
n

�n

ν
(
�R+1(f )

)

+ oL2

(√
�n ∨ �

(R+1)
n

�n

)
.

(c) The following sharper expansion also holds when (γ R+2
n , γn)n≥1 is averag-

ing

νγ
n (ω,f )− ν(f )−

R∑
�=2

�
(�)
n

�n

ν
(
��(f )

)
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= M
(1,g)
n +Nn

�n

+ �
(R+1)
n

�n

ν
(
�R+1(f )

)

+ �
(R+2)
n

�n

ν
(
�R+2(f )

)+ oL2

(√
�

(3)
n ∨ �

(R+2)
n

�n

)
,

where N0 = 0 and

�Nn =�M
2,g
k +�M

3,g
k + γ

3
2

k

(
σg′2

)
(X̄k−1)Uk,

with g2 =Q(ϕ2(f )), that is, the solution to ϕ2(f )− ν(ϕ2(f ))=−Lg2.

REMARK 3.1. The first expansion is adapted to the proof of Theorem 2.1(a),
the second one to Theorem 2.1(b) and (c) and Theorem 2.2(a). Statement (c) is
written in view of Theorem 2.2(b) where one needs to handle the second-order
term of the asymptotic expansion of the MSE. Note that the bias term of order
R+ 2 in (c) will contribute to m̃f (q̄,R) in Theorem 2.2(b). At this stage, it can be
justified by the following remark: when a = 1/(2R + 1),

�
(R+1)
n

�n

�
(R+2)
n

�n

n→+∞∼
(

2R

2R + 1

)2 1

n
.

As concerns the contribution of the martingale correction �Nn, we refer to Propo-
sition 4.1 for details. Finally, remark that all the negligible terms are given with
the L2-norm. For Theorem 2.1, “oP” is enough.

PROOF. (a) and (b): Let R ≥ 2 be an integer. Let us consider the decompo-
sition given by (3.1) in Lemma 3.1. When (γn)n≥1 = η = (γn)n≥1, L = R and
g =Qf , we get

νγ
n (f )− ν(f )−

R∑
�=1

�
(�)
n

�n

ν
(
ϕ�(f )

)

= g(X̄0)− g(X̄n)

�n

+
R∑

�=2

�
(�)
n

�n

(
νγ �,γ
n

(
ϕ�(f )

)− ν
(
ϕ�(f )

))

+ �
(R+1)
n

�n

νγ R+1,γ
n

(
ϕR+1(f )

)+ M
1,g
n

�n

+ 1

�n

n∑
k=1

( 3∑
i=2

�M
(i,g)
k +�R

(1,g)
k,R +�R

(2,g)
k,R +�R

(3,g)
k,R

)
.

(3.5)

By Lemma 3.2(i) applied with (ηn)= (γn),∥∥∥∥g(X̄0)− g(X̄n)

�n

∥∥∥∥
2
≤ C

�n

.
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As well, by Lemma 3.2(ii) applied for different choices of (θn), h and (Zn)n≥1, we
have

∥∥∥∥∥ 1

�n

n∑
k=1

(
�M

(2,g)
k +�M

(3,g)
k +�R

(1,g)
k,R

)∥∥∥∥∥
2

≤C

√
�

(2)
n

�n

.

Finally, Lemma 3.2(iii) and (iv) are adapted to manage �R
(2,g)
k,R and �R

(3,g)
k,R , re-

spectively. This yields

∥∥∥∥∥ 1

�n

n∑
k=1

(
�R

(2,g)
k,R +�R

(3,g)
k,R

)∥∥∥∥∥
2

≤ C

(
�

(R+2)
n

�n

+ �
(R+ 3

2 )
n

�n

)
≤ C

�
(R+ 3

2 )
n

�n

.

The above terms are thus negligible in expansions (a) and (b). As concerns

ν
γ R+1,γ
n (ϕR+1(f )), one can deduce from the polynomial growth of ϕR+1(f ) and

from (3.7) that there exists C > 0 such that

∀n≥ 1
∥∥νγ R+1,γ

n

(
ϕR+1(f )

)∥∥
2 ≤ C.

This means that this term is negligible in the expansion (a). In (b), (γ R+1
n , γn) is

averaging so that by Proposition 1.1,

νγ R+1,γ
n

(
ϕR+1(f )

) n→+∞−−−−→ ν
(
ϕR+1(f )

)
a.s.

But using again (3.7), one checks that (‖νγ R+1,γ
n (ϕR+1(f ))‖2+δ)n is a bounded

sequence for a positive δ. Thus, an uniform integrability argument yields that

νγ R+1,γ
n

(
ϕR+1(f )

) n→+∞−−−−→ ν
(
ϕR+1(f )

)
in L2.

But for any �, ϕ� is the component corresponding to k = 1 in the definition (3.4) of
��. In (b), ν(ϕR+1(f )) will thus contribute to ν(�R+1). As well, the terms ν(ϕ�),
� = 2, . . . ,R exhibited in this first expansion will certainly contribute to ν(��),
�= 2, . . . ,R.

Now, we focus on the second bias term of (3.5). More precisely, for each � ∈
{2, . . . ,R}, we have to repeat the previous procedure: we apply the expansion (3.1)
of Lemma 3.1 with η = (γ �

n )n≥1, L= R − �+ 1, f� = ϕ� and g� =Qϕ� (defined
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above). After several transformations, this yields

�
(�)
n

�n

(
νγ �,γ
n (f�)− ν(f�)

)− R−�+1∑
m=2

�
(�+m−1)
n

�n

ν
(
ϕ[1]m ◦ ϕ

[1]
� (f )

)

=− 1

�n

n∑
k=1

γ �−1
k �Qϕ�(X̄k)

+
R−�+1∑
m=2

�
(�+m−1)
n

�n

(
νγ �+m−1,γ
n − ν

)(
ϕm ◦ ϕ�(f )

)

+ �
(R+1)
n

�n

νγ R+1,γ
n

(
ϕR−�+2 ◦ ϕ�(f )

)
+ 1

�n

n∑
k=1

γ �−1
k

( 3∑
i=1

�M
(i,g�)
k +�R

(i,g�)
k,R−�+1

)
.

(3.6)

Applying again Lemma 3.2 allows us to control the L2-norm of the negligible
terms: ∥∥∥∥∥ 1

�n

n∑
k=1

γ �−1
k �Qϕ�(X̄k)

∥∥∥∥∥
2

≤ Cγ �−1
1

�n

and∥∥∥∥∥ 1

�n

n∑
k=1

γ �−1
k

( 3∑
i=1

�M
(i,g�)
k +�R

(i,g�)
k,R−�+1

)∥∥∥∥∥
2

≤ C

√
�

(2�−1)
n ∨ �

(R+ 3
2+�−1)

n

�n

.

Again, the penultimate term of the previous decomposition is negligible for ex-
pansion (a) and satisfies the following convergence property when (γ R+1, γ ) is
averaging:

�n

�
(R+1)
n

(
�

(R+1)
n

�n

νγ,γ L+1

n

(
ϕ
[1]
R−�+2 ◦ ϕ

[1]
� (f )

)) n→+∞−−−−→ ν
(
ϕ
[1]
L−�+2 ◦ ϕ

[1]
� (f )

)
,

a.s. and in L2. This brings a second “contribution” to ν(�R+1).
Finally, it remains to consider for every � ∈ {2, . . . ,R} each term of (3.6). Set-

ting � = m1, m = m2, the sequel of the proof consists in repeating the procedure
until k := inf{i :m1 + · · · +mi =R+ i}. The result follows.

(c) The proof is based on the same principle but is slightly more involved since
we aim at keeping all the terms which are going to play a role in the second-order
expansion of Theorem 2.2(b). This implies to start the previous proof with L =
R + 1 (and in the second step with L= R − �+ 2). Furthermore, the main other
difference comes from the martingale component. As a complement of M

(1,g)
n ,
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one also keeps whole the martingale terms whose L2-norm is not negligible with

respect to

√
�

(3)
n

�n
. In short, this corresponds to the martingale increments with a

factor γk or γ
3
2

k . This yields the two martingale increments �M
(2,g)
k and �M

(3,g)
k

of the first expansion but also the dominating martingale increment of the second
expansion above: γk�M

(1,g�)
k . The result follows. �

LEMMA 3.2. Assume (S). Let h be a smooth function with polynomial growth.
We know from Proposition 1.1 that, for every p ∈ (0,+∞),

(3.7) Ch,p = sup
n≥1

∥∥h(Xn)
∥∥
p <+∞.

Then:

(i) If (ηn/γn)n≥1 is a nonincreasing sequence of real numbers,∥∥∥∥∥
n∑

k=1

ηk

γk

�h(X̄k)

∥∥∥∥∥
2

≤ Ch,2
η1

γ1
.

(ii) If (Zk)k≥1 is a sequence of i.i.d. centered random variables with finite vari-
ance, then for any deterministic sequence (θk)k≥0,∥∥∥∥∥

n∑
k=1

θkh(X̄k−1)Zk

∥∥∥∥∥
2

≤ Ch,2‖Z1‖2

√√√√ n∑
k=1

θ2
k .

(iii) For any sequence (θk)k≥1 of real numbers,∥∥∥∥∥
n∑

k=1

θkh(X̄k−1)

∥∥∥∥∥
2

≤ Ch,2

n∑
k=1

|θk|.

(iv) For any sequence (θk)k≥1 of real numbers and any r > 0, there exists a
real constant C =Cr,b,σ,h,γ such that∥∥∥∥∥

n∑
k=1

θk sup
u∈[0,1]

∣∣h(X̄k−1 + u�X̄k)
∣∣|�X̄k|r

∥∥∥∥∥
2

≤ C

n∑
k=1

|θk|γ
r
2

k .

PROOF. Using that (ηn/γn)n≥1 is a nonincreasing sequence, we have∣∣∣∣∣
n∑

k=1

ηk

γk

�h(X̄k)

∣∣∣∣∣= η1

γ1

∣∣h(X̄0)
∣∣+ n−1∑

k=1

(
ηk

γk

− ηk+1

γk+1

)∣∣h(X̄k)
∣∣+ ηn

γn

∣∣h(X̄n)
∣∣

so that∥∥∥∥∥
n∑

k=1

ηk

γk

�h(X̄k)

∥∥∥∥∥
2

≤ Ch,2

(
η1

γ1
+

n−1∑
k=1

(
ηk

γk

− ηk+1

γk+1

)
+ ηn

γn

)
= Ch,2

η1

γ1
.



WEIGHTED MULTILEVEL LANGEVIN SIMULATION 3385

This concludes the proof of (i). Items (ii) and (iii) are straightforward conse-
quences of the fact that supn≥1 E[|h(Xn)|2] < +∞. For (iv), the polynomial
growth of h implies that there exists p > 0 and a constant C > 0 such that for
any x, y ∈Rd ,

sup
u∈[0,1]

∣∣h(x + uy)
∣∣≤ C

(
1+ |x|p + |y|p).

Using that b and σ are sublinear functions and Minkowski’s inequality,∥∥∥ sup
u∈[0,1]

∣∣h(X̄k−1 + u�X̄k)
∣∣|�X̄k|r

∥∥∥
2

≤ C
(
1+ ∥∥|Xk−1|p

∥∥
4 +

∥∥|�Xk|p
∥∥

4

)∥∥|�Xk|r
∥∥

4 ≤ C̃γ
r
2

k .

The last statement follows using again Minkowski’s inequality. �

3.2. Error expansion of the correcting levels. For a given sequence γ := (γn),
let us denote by (X̄k)k≥0 and (Ȳk)k≥0 the two Euler schemes of the diffusion
(Xt)t≥0 driven by the same Brownian motion W and with the step sequences
(γn) and (γn/M), respectively. We then define a sequence of empirical measures
(μ

M,γ
n ) by

μM,γ
n (dx)= 1

�n

n∑
k=1

((
M−1∑
m=0

γk

M
δȲM(k−1)+m

)
− γkδX̄k−1

)
, n≥ 1.

By the definition (2.3), one first notes that for r = 2, . . . ,R, μ
(r,M)
n = μ

M,γ (r)

n built
with the Euler schemes X̄(r) and Ȳ (r) (keep in mind that γ

(r)
k = γk

Mr−2 ). As a conse-

quence, expanding (μ
M,γ
n (f ))n≥1 will elucidate the behavior of the refined levels

in the ML2Rgodic procedure.
In the proposition below, we thus state a result similar to Proposition 3.1 but for

the sequence (μ
M,γ
n (f ))n≥1.

PROPOSITION 3.2 (Bias error expansion for the refined levels). Assume (S),
(P) and uniqueness of the invariant distribution ν of the diffusion is unique. Let
R ∈N∗, R ≥ 2 and let f ∈ C∞(R,R) with polynomial growth and let g =Qf .

(a) Assume that for every � ∈ {1, . . . ,R}, the pair (γ �
n , γn)n≥1 is averaging.

Then,

μM,γ
n (f )−

R∑
�=2

(
M1−� − 1

)�(�)
n

�n

ν
(
��(f )

)=−Mn(σg′)
�n

+ oL2

(√
�n ∨ �

(R)
n

�n

)
,
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where for a Borel function ϕ :Rd →R,

Mn(ϕ)=
n∑

k=1

ϕ(X̄k−1)(W�k
−W�k−1)

−
M−1∑
m=0

ϕ(ȲM(k−1)+m)(W�
k−1+m+1

M

−W�k−1+ m
M

).

(b) If furthermore, the pair (γ R+1
n , γn)n≥1 is averaging, then the following

sharper expansion also holds:

μM,γ
n (ω,f )−

R∑
�=2

(
M1−� − 1

)�(�)
n

�n

ν
(
��(f )

)

=−Mn(σg′)
�n

+ (
M−R − 1

)�(R+1)
n

�n

ν
(
�R+1(f )

)

+ oL2

(√
�

(2)
n ∨ �

(R+1)
n

�n

)
.

(c) The following sharper expansion also holds when (γ R+2
n , γn)n≥1 is averag-

ing:

μM,γ
n (f )−

R∑
�=2

(
M1−� − 1

)�(�)
n

�n

ν
(
��(f )

)

=−Mn(σg′)+Nn(
1
2σ 2g′′)

�n

+ (
M−R − 1

)�(R+1)
n

�n

ν
(
�R+1(f )

)
+ (

M−R−1 − 1
)�(R+2)

n

�n

ν
(
�R+2(f )

)

+ oL2

(√
�

(2)
n ∨ �

(R+2)
n

�n

)
,

where, for a Borel function ϕ :Rd →R,

Nn(ϕ)=
n∑

k=1

ϕ(X̄k−1)
(
(W�k

−W�k−1)
2 − γk

)

−
M−1∑
m=0

ϕ(ȲM(k−1)+m)

(
(W�

k−1+m+1
M

−W�k−1+ m
M

)2 − γk

M

)
.
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PROOF. With the notation introduced in (2.1), set

νγ̃ 2,M

n (Ȳ , f )=
(

n∑
k=1

γ̃
2,M
k

)−1 n∑
k=1

γ̃
2,M
k δȲk−1

.

One can check that for every n≥ 1,

μM,γ
n (ω,f )= (

ν
γ̃ 2,M

nM (Ȳ , f )− ν(f )
)− (

νγ
n (f )− ν(f )

)
.

For (a) and (b), it remains now to apply Proposition 3.1(a) and (b) to both terms

on the right-hand side of the above equation [with step γ̃ 2,M for ν
γ̃ 2,M

nM (Ȳ , f )]. The
result follows by concatenating martingale components and by noting that for any
integer �≥ 2, ∑nM

k=1(γ̃
2,M
k )�∑nM

k=1 γ̃
2,M
k

= M1−��
(�)
n

�n

.

For the proof of (c), the only difference with Proposition 3.1(c) is that one only
keeps the martingale increment M

(2,g)
n of the corrective term Nn. More precisely,

the terms of Nn appearing with a factor γ
3
2

n are here viewed as negligible terms. Us-
ing Lemma 3.2(ii), one easily checks that these martingale corrections are bounded

in L2 by
√

�
(3)
n /�n [which is o(

√
�

(2)
n /�n)]. �

REMARK 3.2. The fact that we keep less martingale terms in expansion (c)
can be understood as follows: in Section (4.2), we will show that the apparently
dominating martingale component Mn(σg′) is in fact negligible at the first order
of the expansion under confluence assumptions. This implies that the covariance
terms induced by the product of this martingale and the martingale corrections

appearing with a factor γ
3
2

k in Nn (see Proposition 3.1) will be also negligible at a
second order.

4. Rate of convergence for the dominating martingales. In the continuity
of Propositions 3.1 and 3.2, we now propose to elucidate the weak or L2 rate of
convergence of the dominating martingales, that is, the martingales coming out in
the above error expansions established in the former section.

4.1. The dominating martingale term involved in ν
γ
n (f ) − ν(f ). We begin

by stating some asymptotic results for the first- and second-order martingales
(M

(1,g)
n )n≥1 and (Nn)n≥1 which appear in the expansions of Proposition 3.1. The

associated statements describe the asymptotic martingale contributions of the first
(dominating) term of the ML2Rgodic procedure. With the view to Theorem 2.1,
the first statement concerns the convergence in distribution of the dominating mar-
tingale (M

(1,g)
n )n≥1 whereas the second and third ones are crucial steps in the proof

of Theorem 2.2(a) and (b), respectively.
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PROPOSITION 4.1. Assume (S) and (P). Let g =Qf . Then

(a)

1√
�n

M(1,g)
n

(R)=⇒N
(

0;
∫
R

(
σg′

)2
dν

)
.

(b)

E

[
(M

(1,g)
n )2

�n

]
=

∫
R

(
σg′

)2
dν + o(1) as n→+∞.

(c) If (γn, γ
2
n ) is averaging,

E

[
(M

(1,g)
n +Nn)

2

�n

]
=

∫
R

(
σg′

)2
dν + �

(2)
n

�n

(
σ 2

2,1(f )+ o(1)
)

as n→+∞,

where

(4.1) σ 2
2,1(f )=

∫
R

[
ϕ2

((
σg′

)2)+ 1

2

(
σ 2g′′

)2 + (
σg′

)(
g(3)σ 3 + 2

(
σg′2

))]
dν,

where g2 =Qϕ2(f ), that is, the solution to ϕ2(f )− ν(ϕ2(f ))=−Lg2.

REMARK 4.1. If γn = γ1n
− 1

2R+1 ,

1

�n

n→+∞∼ 2R

(2R + 1)γ1
n−

2R
2R+1 and

�
(2)
n

�n

n→+∞∼ 2R

(2R + 1)n
.

One thus retrieves the orders of the expansions established in Theorem 2.2.

PROOF. (a) Using Proposition 1.1,

(4.2)
〈M(1,g)〉n

�n

= νγ
n

((
σg′

)2) n→+∞−−−−→ ν
((

σg′
)2) a.s.

Furthermore, by the Cauchy–Schwarz inequality and (3.7), we have for every
ε > 0,

n∑
k=1

E
[(

�M
(1,g)
k

)21
(�M

(1,g)
k )2>ε

]≤ 1

ε2

n∑
k=1

E
[(

�M
(1,g)
k

)4]≤ C
�

(2)
n

�2
n

n→+∞−−−−→ 0.

This second convergence implies that the so-called Lindeberg condition is ful-
filled. Then (a) is a consequence of the CLT for martingale arrays (see [10], Corol-
lary 3.1).

(b) By the Jensen inequality, for a given function f ,

E
[(

νγ
n (f )

)2]≤ E
[
νγ
n

(
f 2)]
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and it follows again from Proposition 1.1 and from the fact that σg′ has (at most)
polynomial growth that

(4.3) sup
n

E
[(

νγ
n

((
σg′

)2))2]≤ sup
n

E
[
1+ |X̄n|r] <+∞

owing to (S) and (3.7). As a consequence, (ν
γ
n ((σg′)2))n≥1 is a uniformly inte-

grable sequence so that the convergence of (ν
γ
n ((σg′)2)) toward ν((σg′)2) also

holds in L1. The second statement then follows from (4.2).
(c) First, using that E[Un(U

2
n − 1)] = 0 and that E[U4

n ] = 1, one can check that

1

�n

E
[(

M(1,g)
n +Nn

)2]= E
[
νγ,γ
n

((
σg′

)2)]+ �
(2)
n

�n

E
[
νγ 2,γ
n (F )

]
,

where

F(x)=
[

1

2

(
σ 2g′′

)2 + (
σg′

)(
g(3)σ 3 + 2

(
σg′2

))]
(x).

On the one hand, since (γ 2
n , γn)n≥1 is averaging, we deduce from Proposition 1.1

that

νγ 2,γ
n (F )

n→+∞−−−−→ ν(F ) a.s.

But using uniform integrability arguments similar to (4.3), the convergence also
holds in L1. On the other hand, let us focus on E[νγ,γ

n ((σg′)2)]. We set h= (σg′)2.
Using Proposition 3.1(a) (and the fact that �2 = ϕ2) with R = 2, we have

νγ
n (h)− ν(h)= M

(1,Qh)
n

�n

+ �
(2)
n

�n

ν
(
ϕ2(h)

)+ oL2

(√
�n ∨ �

(2)
n

�n

)
.

By (4.2), we deduce that

E

[
(M

(1,g)
n +Nn)

2

�n

]
=

∫
R

(
σg′

)2
dν + �

(2)
n

�n

(
ν
(
ϕ2(h)+ F

)+ o(1)
)
.

The last statement follows. �

4.2. The dominating martingale in the error expansion of (μ
M,γ
n (f ))n≥1. In

this section, we focus on the behavior of the martingale terms involved by the
refined levels of the ML2Rgodic procedure. Thus, this corresponds to the variance
induced by this procedure. On a finite horizon, Euler schemes are pathwise close
(in an L2-sense for instance) and this property implies one of the important features
of multilevel procedures: reducing the bias without increasing significantly the
variance. As mentioned before, on a long run scale, such a property is not true in
general. More precisely, without additional assumptions, the martingale (Mn)n≥1
defined in Proposition 3.2 is a priori not negligible compared to the one induced
by the first term of the ML2Rgodic procedure. However, this turns out to be true
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in presence of an asymptotic confluence assumption. This is the first statement
of the next proposition. In the second one, we go deeper in the analysis of the
martingale contribution of (μ

M,γ
n (f ))n≥1 under a stronger confluence assumption.

The second property will contribute only to Theorem 2.2(b).

PROPOSITION 4.2. Assume (S) and (P). Let h1 and h2 be locally Lipschitz
functions with polynomial growth:

(a) If (Cw) holds, then (Mn(h1)√
�n

)n≥1 converges to 0 in L2.

(b) Assume (Cs) holds and that (γn, γ
2
n )n is averaging. Assume that h1 is C2

and that h1 and its derivatives have polynomial growth. Then the martingales
(Mn(h1)) and (Nn(h2)) are orthogonal and

1

�
(2)
n

E
[(
Mn(h1)+Nn(h2)

)2] n→+∞−−−−→
(

1− 1

M

)[
1

2

∫
R

(
h′1σ

)2
dν + 2

∫
h2

2 dν

]
.

In particular, when h1 = σg′ and h2 = 1
2σ 2g′′ (with g = Qf ), this variance is

denoted by σ 2
2,2(f ) which subsequently reads

(4.4)

σ 2
2,2(f )=

[
1

2

∫
R

(
h′1σ

)2
dν + 2

∫
h2

2 dν

]
=

∫
σ 2

((
σg′′

)2 + σσ ′g′g′′ + 1

2

(
σ ′g′

)2
)

dν.

PROOF. (a) Set ϕ = h1. First, using that X̄ and Ȳ are built with the same
Wiener increments,

〈
M(ϕ)

〉
n =

n∑
k=1

γk

M

M−1∑
m=0

(
ϕ(X̄k−1)− ϕ(ȲM(k−1)+m)

)2

so that

〈M(ϕ)〉n
�n

=M

M−1∑
m=0

ν̂γ,m
n

(
ϕ̂2),

where ν̂
γ,m
n (f ) = 1

�n

∑n
k=1 γkf (X̄k−1, ȲM(k−1)+m) and ϕ̂(x, y) = ϕ(x) − ϕ(y).

With similar arguments as for the proof of Proposition 1.1, for every m ∈
{0, . . . ,M − 1}, (ν̂

γ,m
n )n converges a.s. to the unique invariant distribution of the

duplicated diffusion ν� [since Assumption (Cw) holds]. By uniform integrability
arguments, one can check that the convergence holds along continuous functions
with polynomial growth so that

ν̂γ,m
n

(
ϕ̂2) n→+∞−−−−→

∫ (
ϕ(x)− ϕ(y)

)2
ν�(dx, dy)= 0 a.s.
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Again with uniform integrability arguments (using that supnE[|X̄n|r ] < +∞ for

every positive r), one can check that E[ν̂γ,m
n (ϕ̂2)] n→+∞−−−−→ 0. It follows that

E[ 〈M(ϕ)〉n
�n

] n→+∞−−−−→ 0.
(b) The proof of this statement is the purpose of the end of the section. First,

remark that the orthogonality of M(h1) and N (h2) follows from independency
of the increments of the Brownian motion and from the fact that for every s < t ,
E[(Wt − Ws)((Wt − Ws)

2 − (t − s))] = 0. Then it remains to study these two
martingales separately. In Lemma 4.1, we go deeper in the study of the long run
behavior of the martingale M(h1) under Assumption (Cs) and in Lemma 4.2, we
investigate the one of the martingale N (h2). �

4.2.1. Long run behavior of M(ϕ) under strong confluence.

LEMMA 4.1. Under the assumptions of Proposition 4.2(b),

1

�
(2)
n

E
[
Mn(h1)

2] n→+∞−−−−→ 1

2

(
1− 1

M

)∫
R

(
h′1σ

)2
dν.

PROOF. We temporarily write ϕ instead of h1.
Step 1: We decompose M(ϕ) as the sum of terms involving the limiting diffu-

sion process X:

M(ϕ)=M(1) −
M−1∑
m=0

M(2,m) +
m−1∑
m=1

M(3,m),

where

M(1)
n =

n∑
k=1

(
ϕ(X̄k−1)− ϕ(X�k−1)

)
�W�k

,

M(2,m)
n =

n∑
k=1

(
ϕ(ȲM(k−1)+m)− ϕ(X�k−1+ m

M

)
)
(W�

k−1+m+1
M

−W�k−1+ m
M

),

M(3,m)
n =

n∑
k=1

(
ϕ(X�k−1+ m

M

)− ϕ(X�k−1)
)
(W�

k−1+m+1
M

−W�k−1+ m
M

).

We first deal with M(1) whose predictable bracket given by

〈
M(1)〉

n ≤
n∑

k=1

γk

(
ϕ(X̄k−1)− ϕ(X�k−1)

)2

≤ [ϕ]Lip

n∑
k=1

γk|X̄k−1 −X�k−1 |2.
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Let A(2) be the infinitesimal generator of the duplicated diffusion (Xx
t ,Xx′

t )t≥0

and let us denote by b̃ : Rd × R
d → R

d × R
d and σ̃ : Rd × R

d →M2d,2q the
associated drift and diffusion coefficients. If we temporarily set S(x, y)= (x−y)2,
then

A(2)S(x, y)= (
b(x)− b(y)

)
(x − y)+ 1

2

(
σ(x)− σ(y)

)2

and (Cs) reads, A(2)S ≤−αS or equivalently 0≤ S ≤− 1
α
A(2)S.

Now, by mimicking the proof of (1.9) (where the result has been established for

functions of the Euler scheme alone), we get that, as soon as
√

�n

�
(2)
n

→ 0, for every

smooth function f :Rd ×R
d →R,

1

�
(2)
n

n∑
k=1

γkA
(2)f (X�k−1, X̄k−1)

a.s.−→m(f )= ν�

(
1

2
D2f (·).b̃(·)⊗2

)

+ 1

24
E
[
D(4)f (·)(σ(·)U )⊗4]

,

where U ∼N (0, Iq) and ν� is the image of ν on the diagonal of R2 (which is the
unique invariant distribution of the duplicated diffusion). Straightforward compu-
tations show that m(S) = 0 since ∇S(x, y) = 2

( x−y
y−x

)
, D(2)S(x, y) = 2

[ 1 −1
−1 1

]
and D(�)S ≡ 0, �≥ 3. Thus, taking advantage of the strong confluence, we derive
that

lim
n

1

�
(2)
n

n∑
k=1

γk(X�k−1 − X̄k−1)
2 ≤− 1

α
m(S)= 0 a.s.

Uniform integrability arguments imply that the above convergence also holds
in L1. Thus,

E

[〈M(1)〉n
�

(2)
n

]
−→ 0 as n→+∞.

The same method of proof shows a similar result for M(2,m), m= 0, . . . ,M −
1 [by considering the scheme (ȲMk+m)k≥0 and the filtration Gm

k = FW
�k−1+ m

M

]. It

follows that E[ 〈M(2,m)〉n
�

(2)
n

] −→ 0 as n→+∞.

Step 2: Now we deal with M(3,m), m = 1, . . . ,M − 1. First, we compute the
predictable bracket

〈
M(3,m)〉

n =
1

M

n∑
k=1

γk

(
ϕ(X�k−1+ m

M

)− ϕ(X�k−1)
)2

.



WEIGHTED MULTILEVEL LANGEVIN SIMULATION 3393

Then we decompose

ϕ(X�k−1+ m
M

)− ϕ(X�k−1)

= ϕ′(X�k−1)(X�k−1+ m
M

−X�k−1)︸ ︷︷ ︸
(a)k

+ (
ϕ′(�k−1)− ϕ′(X�k−1)

)
(X�k−1+ m

M

−X�k−1)︸ ︷︷ ︸
(b)k

,

�k−1 ∈ (X�k−1,X�k−1+ m
M

).

Let us deal first with (b)k . The function ϕ′′ being with polynomial growth, there
exists some positive C and p such that for every x and y in R

d ,∣∣ϕ′(x + y)− ϕ′(x)
∣∣≤C

(
1+ |x|p + |y|p)|y|.

Thus,

1

�
(2)
n

n∑
k=1

γk(b)2
k ≤

C

�
(2)
n

n∑
k=1

γk(X�k−1+ m
M

−X�k−1)
4(1+ |X�k−1 |2p)(1+ |Uk|2p).

Using that supt E[|Xx
t |r ]<+∞, one easily checks that for every r ≥ 2,

sup
k

E
[|X�k−1+ m

M

−X�k−1 |r
]≤Cγ

r
2

k

so that with the help of the Cauchy–Schwarz inequality,

lim
n

1

�
(2)
n

n∑
k=1

γkE(b)2
k = 0.

For (a)k , we write

(a)k = (
ϕ′σ

)
(X�k−1)(W�k−1+ m

M

−W�k−1)+ (ã)k,

where

(ã)k = ϕ′(X�k−1)

(∫ �k−1+ m
M

�k−1

b(Xs) ds +
∫ �k−1+ m

M

�k−1

(
σ(Xs)− σ(X�k−1)

)
dWs

)
.

It is clear, owing to Doob’s inequality that

E(ã)2
k ≤

∥∥ϕ′∥∥2
sup

(
γ 2
k sup

t≥0
E
∣∣b(Xt)

∣∣2
+ γk[σ ]2LipE

(
sup

t∈[X�k−1 ,�
k− 1

2
)

|Xs −X�k−1 |2
))

≤ Cb,σ,ϕγ 2
k .
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Then 1
�

(2)
n

∑n
k=1 γk(ã)2

k

L1−→ 0 as above.

The last term of interest is again a martingale increment. We note that

E
((

ϕ′σ
)2

(X�k−1)(W�k−1+ m
M

−W�k−1)
2|FW

�k−1

)= mγk

M

(
ϕ′σ

)
(X�k−1)

2.

The sequence (γn, γ
2
n )n≥1 being averaging,

1

�
(2)
n

n∑
k=1

γ 2
k

(
ϕ′σ

)
(X�k−1)

2 a.s.−→
∫
R

(
ϕ′σ

)2
dν as n→+∞.

Uniform integrability arguments imply that 1
�

(2)
n

∑n
k=1 γ 2

k E[(ϕ′σ)(X�k−1)
2] −→∫

R
(ϕ′σ)2 dν and one deduces that

E

[〈M(3,m)〉n
�

(2)
n

]
−→ m

M2

∫
R

(
ϕ′σ

)2
dν.

The result then follows from the orthogonality of the martingales M(3,m), m =
1, . . . ,M − 1 (the fact that the martingales M1 and M2,m are negligible also
implies by Schwarz’s inequality that so is their cross product). �

4.2.2. Long run behavior of N (h2). We consider now the martingale

Nn(h2)=N 1
n −

M−1∑
m=0

N 2,m,

where

N 1
n =

n∑
k=1

h2(X̄k−1)
(
(W�k

−W�k−1)
2 − γk

)
,

N 2,m
n =

n∑
k=1

h2(ȲM(k−1)+m)

(
(W�

k−1+m+1
M

−W�k−1+ m
M

)2 − γk

M

)
.

LEMMA 4.2. Under the assumptions of Proposition 4.2(b),

1

�
(2)
n

E
[
Nn(h2)

2] n→+∞−−−−→ 2
(

1− 1

M

)∫
R

h2
2 dν.

PROOF. Like in the previous proof, we write ϕ instead of h2. We focus on the
asymptotic behavior of 〈N 〉n.

First, noting that for a random variable Z ∼N (0;1), E((Z2 − 1)2)= 2, we get
since (γn, γ

2
n )n≥1 is averaging,

(4.5)
〈N 1〉n
�

(2)
n

= 2

�
(2)
n

n∑
k=1

γ 2
k ϕ2(X̄k−1)−→ 2

∫
R

ϕ2 dν a.s. as n→+∞
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likewise one shows that for m= 0, . . . ,M − 1 that

〈N 2,m〉n
�

(2)
n

−→ 2

M2

∫
R

ϕ2 dν a.s. as n→+∞.

By uniform integrability arguments, the above convergence extends to the expecta-
tions. Second, we focus on the “slanted” brackets. Let us set �m,k = (W�

k+m+1
M

−
W�k+ m

M

)2 − γk/M . Using the chaining rule for conditional expectations, we note

that, for every m �=m′,

Ek−1
(
ϕ(ȲM(k−1) +m)ϕ(ȲM(k−1)+m′)�m,k−1�m′,k−1

)= 0

so that 〈N 2,m,N 2,m′ 〉n ≡ 0.
Now, let us compute 〈N 1,N 2,m′ 〉n where m ∈ {0, . . . ,M − 1} and (N 1,N 2,m′)

is viewed as a couple of (Fk)-martingales. Writing the increment W�k
−W�k−1 as

follows:

W�k
−W�k−1 = (W�k

−W�
k−1+m+1

M

)+ (W�
k−1+m+1

M

−W�k−1+ m
M

)

+ (W�k−1+ m
M

−W�k−1)

and using some standard properties of the increments of the Brownian Motion, one
can check that

〈
N 1,N 2,m′ 〉

n =
2

M2

n∑
k=1

γ 2
k ϕ(X̄k−1)E

(
ϕ(ȲM(k−1)+m)|Fk−1

)
.

Using second-order Taylor expansions of ϕ between ϕ(ȲM(k−1)+�−1) and
ϕ(ȲM(k−1)+�) for �= 1, . . . ,m, combined with the fact that supj E[|Ȳj |r ]<+∞
for every r > 0, one derives

〈
N 1,N 2,m′ 〉

n =
2

M2

n∑
k=1

γ 2
k

(
ϕ(X̄k−1)ϕ(ȲM(k−1))+OL1(γk)

)

= �
(2)
n

2M2 ν̂γ,γ 2

n (ϕ ⊗ ϕ)+OL1
(
�(3)

n

)
,

where ν̂
γ,γ 2

n (f ) = 1
�

(2)
n

∑n
k=1 f (X̄k−1, ȲM(k−1)). Thus, the sequence (ν̂

γ,γ 2

n )n of

empirical measures associated to the duplicated diffusion (2.16) has a unique in-
variant distribution ν�. By an adaptation of the proof of Proposition 1.1, it can thus
be proved that

ν̂γ,γ 2

n (ϕ ⊗ ϕ)
n→+∞−−−−→ ν�(ϕ ⊗ ϕ)=

∫
ϕ2 dν.
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Once again, by a uniform integrability argument (and using what precedes), one
obtains

1

�
(2)
n

E
[〈
N 1,N 2,m′ 〉

n

] n→+∞−−−−→ 2

M2

∫
ϕ2 dν.

As a conclusion of the previous convergences, one deduces that

1

�
(2)
n

E

[〈
N 1 −

M−1∑
m=0

N 2,m′
〉
n

]
n→+∞−−−−→

(
2+ 2

M2 (M − 2M)

)∫
ϕ2 dν

= 2
(

1− 1

M

)∫
ϕ2 dν. �

5. Proofs of the main theorems (CLT and optimization). Owing to the re-
sults established in the previous sections, we are now in position to prove the three
main results: Theorems 2.1, 2.2 and 2.3. First, keep in mind that in these theorems
the step sequence reads γn = γ1n

−a for some γ1 > 0 and a ∈ (0,1).

5.1. Proof of Theorem 2.1. We mainly detail the proof of Theorem 2.1(b) and
we will only give some elements of the ones of (a) and (c) (which are based on the
same principle) at the end of this section.

First, by (2.6), one reminds that ν̃
(R,W)
n is a linear combination of νn1 and of

μ
(r,M)
nr with nr = �qrn�, r = 2, . . . ,R. For νn1(f ) and μ

(2,M)
n2 (f ), we will make

use of the expansions given in Propositions 3.1(b) and 3.2(b), respectively. For
μ

(r,M)
nr (f ), r = 3, . . . ,R, as defined by (2.5), we apply Proposition 3.2(b) with

step sequence (γn/M
r−2)n≥1. More precisely, by (2.2),

(
M1−� − 1

)�(�,r)
nr

�
(1,r)
nr

=mr,�

�
(�)
nr

�nr

with mr,� = (
M1−� − 1

)
M−(r−2)(�−1),

so that by Proposition 3.2(b), we have for every r ∈ {2, . . . ,R},

μ(r,M)
nr

(f )−
R∑

�=2

mr,�

�
(�)
nr

�nr

ν
(
��(f )

)= cR+1mr,R+1
�

(R+1)
nr

�nr

− Mr−2M(r)
nr (σg′)

�nr

+ oL2

(√
�nr ∨ �

(R+1)
nr

�nr

)
,

where (M(r)
nr )n≥1 is defined similar to Mn but with the step sequence (γn/

Mr−2)n≥1. In particular, (X̄n, ȲMn+m) is now a couple of Euler schemes with step
sequences (γn/M

r−2)n≥1 and (γn/M
r−1)n≥1, respectively.
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It follows from the expansions of order R+1 of each term of ν̃
(R,W)
n established

in Propositions 3.1(b) and 3.2(b), respectively, that

ν̃(R,W)
n (f )− ν(f )

= νn1(f )− ν(f )+
R∑

r=2

Wrμ
(r,M)
nr

(f )

= cR+1W̃R+1
�

(R+1)
n

�n

+ M
(1,g)
n1

�n1

−
R∑

r=2

Wr

Mr−2M(r)
nr (σg′)

�nr

+Bias(1)(a,R, q,n)+Bias(2)(a,R, q,n)+ oL2

(√
�n ∨ �

(R+1)
n

�n

)
,

(5.1)

where Bias(1)(a,R, q,n) is defined in Lemma 2.2(b) of [21] and

Bias(2)(a,R, q,n)= cR+1W1

(
�

(R+1)
n1

�n1

− q−aR
1

�
(R+1)
n

�n

)

+ cR+1

R∑
r=2

Wrmr,R+1

(
�

(R+1)
nr

�nr

− q−aR
r

�
(R+1)
n

�n

)
.

By Lemma 2.2 of [21],

(5.2)
∣∣Bias(1)(a,R, q,n)

∣∣+ ∣∣Bias(2)(a,R, q,n)
∣∣≤ C

n1−a
= o

(
1√
�n

)
.

As concerns the martingale components, one deduces from Propositions 4.1(a)
and 4.2(a) that√

�n1

(
M

(g)
n1

�n1

−
R∑

r=2

Wr

Mr−2M(r)
nr (σg′)

�nr

)
(R)=⇒N

(
0;

∫
R

(
σg′

)2
dν

)
.

Theorem 2.1(b) then follows by the Slutsky theorem and the following remarks:

�n1

n→+∞∼ γ1q
1−a
1

1− a
n1−a, �(R+1)

n �n = 1− a

1− a(R + 1)
γ R

1 naR

and that when a = 1
2R+1 ,

1− a = 2aR = 2R

2R + 1
and

1− a

1− a(R + 1)
= 2.

For the proof of Theorem 2.1(c), the only difference comes from the fact
that the martingale component becomes negligible since 1− a > 2aR when a ∈
(0, (2R+ 1)−1) so that (̃ν

(R,W)
n )n≥1 converges in probability toward mf (a, q,R).

Finally, the proof of Theorem 2.1(a) follows the same lines but with the help of the
expansions of Propositions 3.1(a) and 3.2(a).
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5.2. Proof of Theorem 2.2. Claim (a) is an L2-version of Theorem 2.1(b) so
that it relies on the same decomposition. More precisely, it is a direct consequence
of (5.1) and (5.2) combined with Propositions 4.1(b) and 4.2(a).

Claim (b) is based on the (sharper) second expansions of Propositions 3.1(c)
and 3.2(c) up to order R + 2. More precisely, using the same strategy as in (5.1),
one obtains(̃

ν(R,W)
n (f )− ν(f )

)
= cR+1W̃R+1

�
(R+1)
n

�n

+ cR+2W̃R+2
�

(R+2)
n

�n

+ M
(1,g)
n1 +Nn1

�n1

−
R∑

r=2

Wr

Mr−2(M(r)
nr (σg′)+N (r)

nr (1
2σ 2g′′))

�nr

+
3∑

i=1

Bias(i)(a,R, q,n)+ η(1)
n + η(2)

n ,

where W̃R+2 is defined by (2.9) [and explicitly given by (2.12)], Bias(3) is given
by

Bias(3)(a,R, q,n)= cR+2W1

(
�

(R+2)
n1

�n1

− q−aR
1

�
(R+2)
n

�n

)

+ cR+2

R∑
r=2

Wrmr,R+2

(
�

(R+2)
nr

�nr

− q−aR
r

�
(R+2)
n

�n

)

and η
(1)
n (resp., η

(2)
n ) denotes a remainder term induced by the coarse level (resp.,

by the levels r = 2, . . . ,R). By Propositions 3.1(c) and 3.2(c), one obtains when
a = 1/(2R + 1),∥∥η(1)

n

∥∥
2 = o

(
n−

R+1
2R+1

)
and η(2)

n = Sn + o
(
n−

R+1
2R+1

)
,

where Sn is a centered random variable independent of M
(1,g)
n1 and Nn1 and such

that E[S2
n] = o(�

(2)
n

�2
n

)= o( 1
n
). [In fact, for η

(2)
n , one is slightly more precise than in

Proposition 3.2(c) by separating the martingale component and the bias component
in the oL2 .]

On the other hand, we obtain similar to (5.2):

3∑
i=1

∣∣Bias(i)(a,R, q,n)
∣∣≤ C

n1−a
= C

n
2R

2R+1

.

With the help of these properties (and from the independence of the strata), we
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deduce that∥∥(̃ν(R,W)
n (f )− ν(f )

)∥∥2
2

=
(
cR+1W̃R+1

�
(R+1)
n

�n

+ cR+2W̃R+2
�

(R+2)
n

�n

)2

+
R∑

r=2

W2
rM

2(r−2)
E

[(M(r)
nr (σg′)+N (r)

nr (1
2σ 2g′′)

�nr

)2]

+E

[(
M

(1,g)
n1 +Nn1

�n1

)2]
+ o

(
1

n

)
.

The result is then a consequence of Propositions 4.1(c) and 4.2(c) combined
with the following expansion available for any ρ ∈ (0,1):

∑n
k=1 k−ρ = (1 −

ρ)−1n1−ρ + O(1) (see equation (2.6) of [21]). In particular, it is worth noting
that when a = 1/(2R + 1),

�
(R+1)
n �

(R+2)
n

�2
n

n→+∞∼ 4R

R− 1

γ 2R+1
1

n
,

which induces the rectangular term m̃f (q,R).

5.3. Proof of Theorem 2.3. Step 1 (Optimization of the step parameter γ1):
This step is devoted to the optimization of the starting step γ1, in order to equalize
the impact of the bias and of the variance in the first term of the expansion of the
MSE in (2.22). It amounts to solving the elementary minimization problem:

min
γ1>0

[
σ 2

f (�)+m2
f (�)=R

2R
2R+1

(
2R

2R + 1
σ 2

1 (f )γ−1
1 + 4γ 2R

1 M−R(R−1)c2
R+1

)]
.

We rely on the following elementary lemma (whose proof is left to the reader).

LEMMA 5.1. Let A,B,R > 0. Then

u∗ := arg min
u>0

[
Au−1 +Bu2R]= (

A

2RB

) 1
2R+1

and

min
u>0

[
Au−1 +Bu2R]= (2R + 1)B

(
u∗

)2R =A
2R

2R+1 B
1

2R+1 (2R)
1

2R+1

(
1+ 1

2R

)
.

Consequently,

min
γ1>0

[
σ 2

f (q,R)+m2
f (q,R)

]= (
2

1
R R(2R + 1)

1
2R M−

R−1
2 σ 2

1 (f )|cR+1| 1
R
) 2R

2R+1
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attained at γ ∗1 = γ ∗1 (R,M) given by

(5.3) γ ∗1 =
(

2R

2R + 1

) 1
2R+1

(8R)−
1

2R+1 |cR+1|− 2
2R+1 σ1(f )

2
2R+1 M

R(R−1)
2R+1 .

Step 2 (Optimization of the size of the coarse level): We introduce an auxiliary
allocation parameter ρ ∈ (0,1) to dispatch the target global MSE ε2 so that the
contribution of the first and the second term in the right-hand side of (2.22) are
ρε2 and (1− ρ)ε2, respectively. The first of these two equalities reads

n−
2R

2R+1
[
σ 2

f (�)+m2
f (�)

]≤ ρε2,

where the step parameter γ1 = γ ∗0 (R,M) is given by (5.3). One straightforwardly
derives that

(5.4) n= n(ε,R,M,ρ)= ⌈
ρ−(1+ 1

2R
)μ(R)Rσ 2

1 (f )M−
R−1

2 ε−2− 1
R
⌉
,

where

μ(R)= 2
1
R (2R + 1)

1
2R |cR+1| 1

R −→ c̃ as R→+∞.

Step 3 (Calibrating the depth R): To calibrate R =R(ε), we will now deal with

the second term
σ̃ 2

f+m̃f

n
of the MSE expansion (2.22). Since we have no clue on the

sign of the residual bias term m̃f (q̄,R, γ1), we will replace it by its absolute value.
Moreover, we can plug in its formula the above expression (5.3) of the optimal step
size γ ∗1 (R,M) which yields

∣∣m̃f

(
q̄,R, γ ∗1

)∣∣= 1{cR+1 �=0}
|cR+2|
|cR+1|

R

R− 1

1−M−R

1−M−1 σ 2
1 (f ).

Consequently, using the function � introduced in (2.23) and the obvious fact that
1−M−R ≤ 1, this second term will be upper-bounded by (1− ρ)ε2 as soon as

(5.5)

R

n(ε)

(
η(f,R,M)σ 2

1 (f )+ σ 2
2,1(f )+�(M)R

(
1− 1

M

)
σ 2

2,2(f )

)
≤ (1− ρ)ε2,

where η(f,R,M)= 1{cR+1 �=0} |cR+2|
|cR+1|

1
(R−1)(1−M−1)

→ 0 as R→+∞ owing to the
assumption made on the sequence (cr)r≥1.

Given the expression obtained for n(ε,R,M,ρ), this inequality is satisfied in
turn as soon as

σ 2
2,1(f )+�(M)R

(
1− 1

M

)
σ 2

2,2(f )

≤ (1− ρ)ρ−(1+ 1
2R

)μ(R)σ 2
1 (f )M−

R−1
2 ε−

1
R ,
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or equivalently

(5.6) ε
1
R M

R−1
2 R ≤ 1− ρ

ρ
ρ−

1
2R

μ(R)θ1(f )

(1− 1
M

)�(M)+R−1(θ2(f )+ η(f,R,M))
,

where

θ1(f )= σ 2
1 (f )

σ 2
2,2(f )

and θ2(f )= σ 2
2,1(f )

σ 2
2,2(f )

.

In order to ensure the above condition, we begin by rewriting the left-hand side as
follows:

(5.7) ε
1
R M

R−1
2 R = exp

(
1

R

(
logM

2
R(R − 1)+R logR + log ε

))
and will apply the next lemma with δ = (logM)/2 and R = �x(ε)�.

LEMMA 5.2. Let δ ∈ (0,+∞). Then, for every ε ∈ (0,1], there exists a unique
x(ε) ∈ (1,+∞) solution to

δx(x − 1)+ x logx + log(ε)= 0.

The function ε �→ x(ε) is increasing and satisfies

(5.8) lim
ε→0

x(ε)=+∞, x(ε)≤ 1

2
+

√
log(1

ε
)

δ
+ 1

4
and

(5.9) x(ε)=
√

log(1
ε
)

δ
− log(2)(

1
ε
)

4δ
+ 1

2
+ log δ

4δ
+O

( log(2)(1/ε)√
log(1/ε)

)
as ε→ 0,

where log(2) x = log logx, x > 1.

PROOF. The function h : (ε, x) �→ δx(x − 1) + x logx + log ε defined on
(0,1) × [1,+∞) is continuous, increasing in both ε and x, h(ε,1) = log ε ≤ 0
and limx→+∞ h(ε, x) = +∞ which ensures the existence of a unique solution
x(ε) ∈ [1,+∞) to the equation h(ε, x)= 0. The monotony of x(ε) follows from
that of h. Its limit at infinity follows from the fact that limε→0 h(ε, x)=+∞ and
the inequality in (5.8) is a consequence of the fact that δx(ε)2−δx(ε)− log(1

ε
)≤ 0

as x(ε) ≥ 1. For the expansion, we first note that x(ε) satisfies the second-order
equation

δx(ε)2 + bx(ε)− log
(

1

ε

)
= 0

with b= log(x(ε)/α) where α = exp(δ) so that

(5.10) x(ε)=
√

log(1
ε
)

δ

(√√√√1+ (log(x(ε)/α))2

4δ log(1
ε
)
− log(x(ε)/α)

2
√

δ log(1
ε
)

)
.
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We derive from the inequality in equation (5.8) that, for small enough ε,

0≤ log(x(ε)/α)√
log(1

ε
)
=O

( log(2)(1/ε)√
log(1/ε)

)
= o(1) as ε→ 0.

Consequently, we derive from (5.10) that

(5.11) x(ε)=
√

log(1
ε
)

δ

(
1+O

( log(2)(1/ε)√
log(1/ε)

))
so that

logx(ε)= 1

2

(
log(2)(1/ε)− log δ

)+O

( log(2)(1/ε)√
log(1/ε)

)
.

Plugging this back into (5.11) yields

x(ε)=
√

log(1
ε
)

δ

(
1− log(2)(

1
ε
)− log δ − 2δ

4
√

δ log(1
ε
)

+O

( log(2)(1/ε)

log(1/ε)

))

=
√

log(1
ε
)

δ
− log(2)(

1
ε
)

4δ
+ 1

2
+ log δ

4δ
+O

( log(2)(1/ε)√
log(1/ε)

)
. �

Now let x(ε,M) be the solution of the above equation where δ = δ(M)= logM
2 .

We have

x(ε,M)=
√√√√2 log(1

ε
)

logM
− log(2)(

1
ε
)

2 logM
+ 1

2

+ log(logM)− log 2

2 logM
+O

( log(2)(1/ε)√
log(1/ε)

)
.

Now, we set

R(ε)=R(ε,M)= ⌈
x(ε,M)

⌉
.

We derive from the above lemma the following useful estimates for R(ε):

R(ε)∼
√√√√2 log(1

ε
)

logM

ε→0−−→+∞ and R(ε)≤ 3

2
+

√√√√2 log(1
ε
)

logM
+ 1

4
.

Now, it follows from the very definitions of x(ε,M) and R(ε) that

h
(
ε,R(ε)

)≥ h
(
ε, x(ε,M)

)= 0≥ h
(
ε,R(ε)− 1

)
,

where h is defined in the proof of the previous lemma. Plugging these inequalities
into (5.7) yield

(5.12) 1≤ ε
1

R(ε) M
R(ε)−1

2 R(ε)≤M

(
1− 1

R(ε)

)−1+ 1
R(ε)

(
R(ε)

M

) 1
R(ε)

.
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The above inequality on the right-hand side implies that (5.6) will be true as soon
as ρ = ρ(ε,M) ∈ (0,1) satisfies

1− ρ

ρ
ρ
− 1

2R(ε)

≥M

(
1− 1

R(ε)

)−1+ 1
R(ε)

×
(

R(ε)

M

) 1
R(ε)

(
R−1(ε)θ2(f )+ (1− 1

M
)�(M)

μ(R(ε))θ1(f )

)
.

In fact, one will try to saturate the above condition, that is, to choose ρ(ε,M) such
that

1− ρ(ε,M)

ρ(ε,M)
ρ(ε,M)

− 1
2R(ε)

=M

(
1− 1

R(ε)

)−1+ 1
R(ε)

×
(

R(ε)

M

) 1
R(ε)

(
R(ε)−1θ2(f )+ (1− 1

M
)�(M)

μ(R(ε))θ1(f )

)
.

As the function ρ �→ 1−ρ
ρ

ρ
− 1

2R(ε) is a decreasing homeomorphism from (0,1)

onto (0,+∞) this equation always has a solution ρ = ρ(ε,M). Unfortunately, it
turns out to be of little interest in its present form for practical implementation
since both θi(f ) are unknown.

However, as R(ε)→+∞ as ε→ 0, and μ(R(ε))→ c̃ as ε→ 0, we derive that

1− ρ(ε,M)

ρ(ε,M)
∼ (M − 1)�(M)

c̃θ1(f )

that is,

ρ(ε,M)∼ 1

1+ (M−1)�(M)
c̃θ1(f )

as ε→ 0.

Step 4 (MSE, number of iterations and resulting complexity):

� Resulting MSE: From what precedes, we deduce that after n(ε,R(ε),M,ρ(ε))

iterations, the MSE is lower than ε−2.

� Size: it follows from equation (5.4) in Step 1 combined with the left inequality
in equation (5.12) that

n
(
ε,R(ε),M,ρ(ε)

)
∼

(
1+ (M − 1)�(M)

c̃θ1(f )

)
σ 2

1 (f )c̃R(ε)
(
M

R(ε)−1
2 ε

1
R(ε)

)−1
ε−2
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�
(

1+ (M − 1)�(M)

c̃θ1(f )

)
σ 2

1 (f )c̃R(ε)2ε−2

ε→0∼ 2

logM

(
c̃+ (M − 1)�(M)

θ1(f )

)
σ 2

1 (f )ε−2 log
(

1

ε

)
.

� Complexity: Set n(ε,M)= n(ε,R(ε),M,ρ(ε)). The asymptotic resulting com-
plexity satisfies

K
(
n(ε,M),M

)= n(ε,M)
(
1+(M+1)

(
R(ε)−1

))
κ0

ε→0∼ (M+1)R(ε)n(ε,M)κ0,

so that

K
(
n(ε,M),M

)
� 2κ0(M + 1)

logM

(
c̃+ (M − 1)�(M)

θ1(f )

)
σ 2

1 (f )ε−2 log
(

1

ε

)
as ε→ 0.

� Initialization of the step: it follows from (5.3), the assumption made on cR+1
and the convergence of R(ε)→+∞ that

γ ∗1 (ε)∼ c̃−1M
R(ε)

2 M−
3
4 as ε→ 0,

where we used that R(R−1)
2R+1 = R

2 − 3
4 + 3

4
1

2R+1 . Finally, using the expression of
x(ε), we get

γ ∗1 (ε)
ε→0∼ c̃−1 M−

3
4+�x(ε,M)�−x(ε,M)

2︸ ︷︷ ︸
∈(M− 1

4 ,M
− 3

4 ]

(
logM

2

) 1
4

× exp
(√ logM log(1

ε
)

2

)(
log

(
1

ε

))− 1
4
.

6. Numerical experiments.

6.1. Practitioner’s corner. In this section, we want to provide some helpful
informations for some practical use of the optimized algorithm given in Theo-
rem 2.3. Let ε > 0 denote the prescribed RMSE and let M be an integer greater
than 2. In what follows, we aim at computing ν(f ) for a given function f such
that f − ν(f ) is supposed to be a smooth enough coboundary.

� The weights W(R)
r )r=1,...,R . When the re-sizers are uniform, they are com-

puted by an instant closed form (2.14). Otherwise, they are given in full gener-
ality by the R-tuple of series (2.10) whose computation is also (almost) instanta-
neous. When R = 2,3, one has again an instant closed form (see examples below
Lemma 2.1).
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� Computation of R(ε,M). We recall that R(ε,M) = �x(ε,M)� where
x(ε,M) is the unique solution to log(M)

2 x(x − 1)+ x logx + log(ε) = 0. For the
computation of x(ε,M), we use the classical (one-dimensional) zero search New-
ton algorithm. For standard values of R and M , the reader may use Table 1. Finally,
note that, “though”

R(ε)∼
√

2 log(1/ε)

logM
,

one has

lim
ε→0

R(ε)−
√

2 log(1/ε)

logM
=−∞.

� Values for �(M) and choice of M . The quantity �(M) appears in the size
parameter n(ε,M) [and in the complexity parameter K(f,M) given by (2.24)].
Going back to the optimization procedure of the previous section, one remarks
that for some fixed R and M , one can replace �(M) by �(R,M)

R
. This strategy

leads to sharper bounds on the size parameter n(ε,M) for a given RMSE ε. We
refer to the first paragraph of Section 6.2 for further investigations on this topic
[see (6.4) below and what precedes]. Consequently, in Table 2, we give some val-
ues of �(M), but also of �(R,M)

R
, corresponding to some standard specifications

encountered in practical simulations. This also allows to check how �(R,M)
R

varies
for such low values of R compared to �(M). The conclusion is that �(M) is an
acceptable proxy of �(R,M)

R
.

� Computation of n(ε,M). The specification of the size of the coarse level
n(ε,M) and, which is less important, the a priori estimation of the global com-
plexity, denoted K(f, ε,M), both require to estimate, at least theoretically, the
parameters c̃, θ1(f ) and σ 2

1 (f ). We will focus on their calibration in the next para-
graph. To some extent, the estimation of θ2(f ) is less important and any way out
of reach at a reasonable cost.

But even at this stage, it is inserting to analyze their impact on n(ε,M) in order
to optimize the choice of the root M . To this end, we assume for a moment that

TABLE 2
Values of �(R,M) and �(M)

�(R,M)
R R = 2 R = 3 R = 4 �(M)

M = 2 2.133 2.591 2.674 2.674
M = 3 1.200 1.278 1.245 1.278
M = 4 0.948 1.021 1.024 1.024
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C = c̃θ1(f ) is known. Going back to the sharper upper-bound of at our disposal,
namely (2.24), it suggests to minimize, for fixed C, the function

gC :M �−→ M + 1

logM

(
(M − 1)�(M)

C
+ 1

)
.

Without going further, let us just note that 2�(3) ≤ �(2) so that gC(3) ≤ gC(2)

for any C since 3/ log 2 > 4/ log 3 so that it seems that M = 3 is always a better
choice than M = 2. But as emphasized in the next Section 6.2 (the first paragraph is
devoted to a “toy” Ornstein–Uhlenbeck setting), a sharper study of the complexity
involving �(R,M)

R
leads to temper the answer.

� Calibration of the parameters. This calibration can be performed as a pre-
processing phase based on a preliminary short Monte Carlo simulation, having in
mind that only rough estimates are needed.

– Estimation of σ 2
1 (f ) and θ1(f ). First, let us consider σ 2

1 (f ). Through an L2-
version of (1.8), one deduces that for a family of independent random empirical
measures (ν

(�)
n )L�=1, namely

(6.1)
1

�n

L∑
�=1

E
[(

ν(�)
n (f )− ν̄(L)

n (f )
)2

)
]→ σ 2

1 (f ) as L,n→+∞,

where γn = γ1n
−a with a > 1/3 (say a = 1

2 in practice to get rid of the bias effect

even for small values of n) and ν̄
(L)
n (f )= 1

L

∑L
�=1 ν

(�)
n (f ).

As θ1(f )= σ 2
1 (f )

σ 2
2,2(f )

, it remains to provide an estimator of σ 2
2,2(f ). To do so, we

take advantage of the fact that σ 2
2,2(f ) is the (normalized) asymptotic variance of

(μ
M,γ
n )n≥1. We thus may use the same strategy as above. More precisely, under

Assumption (Cs), we deduce from Propositions 3.2 and 4.2 that

(6.2)
1

�
(2)
n

L∑
�=1

E
[(

μ(�)
n (f )− μ̄(L)

n (f )
)2] n→+∞−−−−→ σ 2

2,2(f )

if γn = γ1n
−a with a > 1/5 (say a = 1

4 in practice to get rid of the bias effect even

for small values of n) with μ̄
(L)
n (f )= 1

L

∑L
�=1 μ

(�)
n (f ).

– About c̃ and θ2(f ). The coefficient c̃ will probably always remain mysterious. On

the other hand, in practice, what we really need is rather |cR(ε)|
1

R(ε) . However, un-

der the assumption limR→+∞ |cR| 1
R = c̃ ∈ (0,+∞) made on cR in Theorem 2.3,

one can make the guess from its very definition that its value is not too far from 1 or
is at least of order a few units. In particular, if the coefficients cR have a polynomial
growth or even cR =O(exp |R|ϑ0), ϑ0 ∈ [0,1), c̃= 1. If they have an exponential
growth, it remains finite (but possibly large). The point of interest is that, anyway,
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this value is much more stable than the first coefficient itself c1 which would come
out in a standard MLMC Langevin simulation framework (not investigated here).

The parameter θ2(f ) seems to be unaccessible as well, but for another reason:
it is the variance induced by a second order martingale. However, as noticed in
Section 6.2 (first paragraph), θ2(f ) is the ratio of two variance terms so that it
seems not so much dependent on the magnitude of the diffusion coefficient [in fact
it can be noted that the same property holds for θ1(f )].

REMARK 6.1. The numerical investigations of the next section show that the
algorithm is very robust to the choice of the parameters. For simple practice, we
thus recommend to get a rough estimation of σ 2

1 (f ) and possibly of θ1(f ) and to
set θ2(f ) = c̃ = 1. In the following simulations, the rough estimations of σ 2

1 (f )

and θ1(f ) [using (6.1)] and (6.2) are achieved with n= 104 and L= 20.

6.2. Numerical tests. We propose in this section to provide some numerical
tests of our algorithm.

Orstein–Uhlenbeck process: Oracle and blind simulation. We begin with the
Ornstein–Uhlenbeck process in dimension 1 solution to

dXt =−1

2
Xt dt + σdWt

with f (x)= x2. We recall that this case is a toy example since all the computations
can be made explicit. In particular, ν ∼N (0, σ 2) so that ν(f )= σ 2. Furthermore,
g(x) = x2 is the unique solution (up to a constant) to the Poisson equation f −
ν(f )=−Lg and it follows that

σ 2
1 (f )= σ 2

2,2(f )= 4σ 4 and σ 2
2,1(f )= 5σ 4.

The reader can remark that in this case, the ratios θ1(f ) and θ2(f ) do not depend
on σ . Even though this property cannot be really generalized, it however empha-
sizes a stability of these parameters with respect to the variance of the model. The
bias terms can also be computed: using that ϕ2(f )= 1

4f and that ϕ� = 0 for �≥ 3,
we get cR+1 = σ 2/4R (so that c̃= 1/4).

We want in this part to get a sharp estimate of the complexity for several choices
of couples (R,M). Following the optimization procedure, we go back to the defi-
nition of n(ε,R,M,ρ) given in (5.4):

n= n(ε,R,M,ρ)= ⌈
ρ−(1+ 1

2R
)μ(R)Rσ 2

1 (f )M−
R−1

2 ε−2− 1
R
⌉

and for each value of R and M , we solve by a Newton method the following
equation for ρ ∈ [0,1]:
(6.3) ε

1
R M

R−1
2 R = 1− ρ

ρ
ρ−

1
2R

μ(R)θ1(f )

R−1θ2(f )+ (1− 1
M

)R−1�(R,M)
,
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where the values of �(R,M) for R,M = 2,3,4 are given in Table 2.
We denote by ρ� the solution of this equation. Then the complexity K(ε,M)

(where we assume that κ0 = 1) is given by

(6.4) K(ε,R,M)=
(

1+M

(
1− 1

R

))
n
(
ε,R,M,ρ�).

This yields the following results for ε = 10−2: On this example, we retrieve the
property which says that M = 2 is a good choice when c̃θ1 is small whereas M =
3 can be greater when this quantity increases. However, as expected, the main
parameter is the level R of the method which increases when ε→ 0.

Taking only the first term of the expansion of the MSE for the crude procedure,
the optimized complexity (with κ0 = 1) for a MSE lower than ε = 10−2 is equal to
K(ε)= 6.93× 106 and K(ε)= 1.77× 109 if σ = 1 or σ = 4, respectively.

In Figure 1, we compare numerically the evolution of ML2Rgodic with the
crude algorithm for σ = 1 and σ = 4. Note that to obtain a rigorous comparison,
the graphs are drawn in terms of the complexity, that once again with a slight abuse
of language, is the number of iterations of the Euler scheme involved by procedure.
One remarks that the effect of the multilevel-RR procedure is increased in the case
σ = 4 where the bias is larger. One also remarks in this case that, even though the
algorithm is robust to the choice M and R, the best choice seems to be the one
given in Table 3.

Of course, in practice, one can not make use of the exact parameters. As ex-
plained in Section 6.1, it is possible to get a rough estimation of σ 2

1 (f ) and θ1(f )

using the CLTS induced by the procedure. The coefficient cR+1 can also be esti-
mated but for this coefficient, this requires to use a multistep method or the proce-
dure ML2Rgodic itself with one more stratum than in the algorithm that we will
implement after. Finally, the coefficient θ2(f ) seems to be impossible to estimate.
This implies that the natural question that the practitioner may ask is: is it possible
to get rid of the estimation of the above parameters?

FIG. 1. Comparison of the evolution in terms of the complexity of the ML2Rgodic with the crude
algorithm.
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TABLE 3
K(ε,R,M) for ε = 10−2

σ = 1 R = 2 R = 3 R = 4 σ = 4 R = 2 R = 3 R = 4

M = 2 1.09× 106 1.58× 106 2.55× 106 M = 2 7.02× 108 5.23× 108 7.34× 108

M = 3 1.11× 106 1.43× 106 2.05× 106 M = 3 7.17× 108 4.76× 108 6.10× 108

M = 4 1.21× 106 1.57× 106 2.27× 106 M = 4 7.56× 108 4.99× 108 6.55× 108

FIG. 2. Orstein–Uhlenbeck process: Evolution of the algorithm in terms of the estimation of the
parameters, exact value: ν(f ) = 16. M = 3, R = 3 and M = 2, R = 2 with exact parameters in
red (continuous) and green (dashed), M = 3, R = 3 with estimation of σ 2

1 (f ) only and without
estimation in blue (dot) and black (dashed).

To answer to this question, we propose in the case σ = 4 to look at the dynamics
of the procedure when we choose to fix:

• cR+1 = θ2(f )= 1 and to estimate σ 2
1 (f ) and θ1(f ),

• cR+1 = θ2(f )= σ 2
1 (f )= θ1(f ).

With these two choices of parameters and with ε = 10−2, we follow the procedure
described in the previous section to estimate γ �

1 , R, ρ and M . Note that we again
obtain R = 3 and M = 3 as an optimal choice. In Figure 2, we thus compare the
evolution of the previous method (with semi-estimated or not estimated) parame-
ters and we can remark on this example that the algorithm seems to be very robust
to the choice of the parameters.

Double-well potential. We consider a second example in dimension 1

dXt =−V ′1(Xt) dt + σ dWt,
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where V1(x) = x2 − log(1 + x2) which is a nonconvex potential (with two lo-
cal minima in −1 and 1) so that Assumption (Cs) is not fulfilled. However, As-
sumption (Cw) is true (see [17], Theorem 2.1). Let us also recall that the invariant
distribution ν satisfies

ν(dx)= 1

ZV1

exp
(
−V1(x)

2σ 2

)
λ(dx),

where ZV1 =
∫
R

exp(−V1(x)

2σ 2 )λ(dx).

We test the algorithm in this setting with f (x)= x2 and σ = 2. Figure 3 shows
that ML2Rgodic is still efficient in this setting. The results are obtained using a
rough estimation of σ 2

1 (f ) and θ1(f ) and the other parameters are fixed to 1. Once
again, the evolution is compared with the crude algorithm with an optimized choice
of γ ∗1 and the evolution is drawn as a function of the complexity.

Statistical example (sparse regression learning). In [3], the authors consider
the problem of sparse regression learning by aggregation. For the sake of simplic-
ity, we only recall here the case of linear regression: let p denote the number of
variables and N the number of observations and suppose we are given n couples of
observations (X1,Y1), . . . , (XN,YN) where the vector Xi = (X1

i , . . . ,X
p
i ) is the

predictor and the scalar Yi is the response. Suppose that there exists θ0 ∈Rp such
that

∀i ∈ {1, . . . ,N}, Yi =Xiθ0 + ξi,

where (ξi)
N
i=1 denotes a sequence of i.i.d . random variables with distribution

N (0, σ 2) for a given (generally unknown) σ > 0. Then the classical question is:

FIG. 3. Double-well potential: approximation of ν(f ) with f (x)= x2, σ = 2, exact value: 3.1207.
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how to estimate θ0 ? When p N , the classical methods (such as the least-square
method) do not work and it is necessary to introduce some alternative procedures.
The estimator of θ0 proposed by Dalalyan and Tsybakov—called EWA (for expo-
nentially weighted aggregate)—is designed as follows:

θ̂ =
∫
Rp

θπV2(dθ),

where πV2 is the Gibbs probability measure defined by

πV2(dθ)= 1

ZV2

exp
(−V2(θ)

)
λ(dθ)

and ZV2 is a normalizing coefficient and V2 : Rp �→ R is the potential defined for
some given positive numbers α, β and τ by

∀θ ∈Rp V2(θ)= |Y−Xθ |2
β

+
p∑

j=1

(
log

(
τ 2 + θ2

j

)+ω(αθj )
)

with ω(θ)= θ2 ∧ (2|θ | − 1).
As mentioned (and already numerically tested) in [3], θ̂ is but the expectation

related to the invariant distribution of the following SDE:

(6.5) dθt =−∇V2(θt ) dt +√2dWt .

It can subsequently be estimated through a Langevin Monte-Carlo procedure. The
difficulty in this context is the fact that p is potentially large so that the numerical
computation needs some adaptations. More precisely, in order to avoid an explo-
sion of the Euler scheme, we need to impose the step to be not to large for small
values of n. We thus assume in what follows that

γn =min
(

γ �
1

na
,

1

p

)
.

Below, we test our ML2Rgodic estimator on a compressed sensing example given
in [3] (see Example 1) with the parameters given in this paper. We fix1

α = 0, β = 4σ 2, τ = 4σ

Tr(XtX)
1
2

and the computations are achieved with p = 500, N = 100 and S = 15 where
S denotes the sparsity parameter, that is, the number S of nonzero components
of θ0 (of course we do not know which ones). Then the matrices X and Y are
generated from simulated data as follows: in this compressed sensing setting, the
matrix X has independent Rademacher entries with parameter 1/2. The unknown

1From a theoretical point of view, α should be a positive number such that α ≤ 1/(4pτ).
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FIG. 4. Sparse regression learning: n �→ ‖θ̂n − θ0‖2 for the crude and ML2Rgodic (R = 3) pro-
cedures.

θ0 is defined simply by θ0(j)= 1j≤S , for every j ∈ {1, . . . , p}. Finally, following
again the parameters given in [3], we set σ 2 = S/9.

Denoting by θ̂n the approximation of θ̂ obtained after n iterations of the scheme,
we depict in Figure 4 the evolution of n �→ ‖θ̂n − θ0‖2. Note that ‖θ̂n − θ0‖2 con-
verges to ‖θ̂ − θ0‖2 (which is not equal to 0). We compare it with the crude proce-
dure [taken with a = 1/3 whereas for the ML2Rgodic procedure, a = 1/(2R + 1)

as usual]. We can remark that the correction on the bias involved by the weighted
multilevel Langevin procedure strongly improves the estimation of θ0. This remark
is emphasized if we compare with the results of [3] based on an Euler scheme with
constant step where the corresponding quantity is equal to 8.917 [in this case, the
constant step is about (Np)−1].

7. About multilevel finite horizon approach for approximation of invariant
distribution. In this paper, we have chosen to develop a multilevel-type estima-
tor of the invariant distribution based on a time discretization of the occupation
measure t−1 ∫ t

0 δXs ds. As mentioned before, such an ergodic like approach only
requires the simulation of one path of the process for the regular procedure (and
2R+ 1 in our weighted multilevel setting). However, alternative approaches based
on spatial averaging, that is, regular Monte Carlo simulations can be considered:
thus, one may take advantage of the weak convergence of L(Xt) toward the invari-
ant distribution. The simplest way to proceed is to fix a large enough horizon T

so that |Ex[f (XT )] − ν(f )| is small and to approximate Ex[f (XT )] by a Monte-
Carlo simulation.
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Let us conclude this paper by a rough study of the complexity of such an ap-
proach when the above Monte Carlo method is a standard multilevel procedure
and by some comparisons with our algorithm. To begin with, let us consider a
continuous-time discretization scheme (ξh

t )t≥0 with constant step h.
For a given T , we recall that the standard MLMC method consists in considering

the following type-estimator:

ϒ(T ,R,N)= 1

N1

N1∑
k=1

Y
(1)
k +

R∑
r=2

1

Nr

Nr∑
k=1

Y
(r)
k ,

where N= (N1, . . . ,NR), (Y r
k )k,r is a sequence of independent random variables

with Y
(1)
k ∼ f (ξh

T ), k = 1, . . . ,N1 whereas for r = 2, . . . ,R, Y r
k is based on a con-

sistent2 coupling of schemes with step h/2r−2 and h/2r−1: Y
(r)
k ∼ (f (ξh21−r

T )−
f (ξh22−r

T )).
In the following proposition, we show that under (Cs), a complexity propor-

tional to ε−2 log(1/ε) can also be attained.

PROPOSITION 7.1. (i) Let f : Rd �→ R be a given function and x ∈ R
d . Let

(ξ
h,x
t )t≥0 be a (continuous-time) discretization scheme with constant step h start-

ing from x. Assume that the following properties hold:

(a) (Rate of convergence) ∃ρ > 0 and c1 > 0 such that for any T ≥ 0,
|E[f (Xx

T )] − ν(f )| ≤ c1e
−ρT .

(b) (Weak error) There exists c2 > 0 such that supT≥0 |E[f (Xx
T )] −

E[f (ξh
T )]| ≤ c2h.

(c) (L2-error) There exists β ≥ 1 and a real constant c3 such that for every
T ≥ 0, ∥∥Xx

T − ξh
T

∥∥
2 ≤ c3h

β
2 .

Then there exists a real constant C depending on c1, c2 and c3 such that for any
ε > 0, the choice

T = 1

ρ
log

(
1

ε

)
, R =

⌊ log(1
ε
)

log 2

⌋
,

Nr =
⎧⎨⎩
⌊
2−r

β+1
2 ε−2 log(1/ε)

⌋
if β = 1,⌊

2−r
β+1

2 ε−2⌋ if β > 1,

for r = 1, . . . ,R, leads to the following properties:∥∥ϒ(T ,R,N)− ν(f )
∥∥

2 ≤ Cε

2By consistent, we mean that the discretization schemes are built with the same Brownian motion.
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and the complexity of the discretization scheme is proportional to

(7.1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ε−2 log3

(
1

ε

)
if β = 1,

ε−2 log
(

1

ε

)
if β > 1.

(ii) Assume that f is a Lipschitz continuous function with Lipschitz constant
[f ]1. Let ξh denote the Euler–Maruyama scheme with constant step h. If (Cs)

holds, assumptions (a), (b) and (c) of (i) hold true with with ρ = α and β = 2 (and
c1 = [f ]1,S

∫ ‖x−y‖Sν(dy)). As a consequence, the complexity is proportional to
ε−2 log(1

ε
).

The proof of this proposition is postponed in [21], Section 3. Let us conclude
by a series of comments about this alternative approach.

Comments. In the previous result, we thus obtained that the spatial averaging
has also the capacity to lead to the complexity ε−2 log(1

ε
) Furthermore, it is worth

noting that the strong convexity-type assumption (Cs) is a guarantee to obtain
β = 2 for the classical Euler–Maruyama scheme. In other words, one does not
require the use of Milstein scheme or antithetic schemes (see [9]) to get β = 2
under the contraction assumption (Cs). In fact, one retrieves a similar property

in Proposition 4.2 where the order (�
(2)
n )

1
2 of the rate of convergence in the CLT

(related to the coupling of consistent coarse and refined Euler schemes) does not
depend on the variability of σ . In the same spirit, one can cite the recent paper [29]
where an alternative finite horizon approach is developed under (Cs) but leading
to a less competitive bound ε−2 log3(1

ε
) (which corresponds to the case β = 1 in

our previous result).
However, let us insist on the fact that the previous result is rough in the sense that

there is no precision about what we mean by “proportional to” and about the con-
stant C. In fact, as in our setting, a precise implementation would need to estimate
the parameters c1, c2, c3 and to optimize the choice of the parameters (including
certainly the choice of the step h). Such developments should be considered in a
future paper to really compare the performances.

Nevertheless, one can objectively consider that the pathwise approach has an
important advantage with respect to the finite horizon approach: there is only one
asymptotic and it does not directly depend on the parameter ρ [which corresponds
to the parameter α in (Cs)]. Actually, it seems that in contrast with our method,
the “finite horizon” procedure really requires (Cs) to be implemented. In fact, for
the occupation measure, the order of the rate of convergence is about

√
t in a very

general setting (including nonconvex settings). Then, as explained before, we only
need to get a rough estimation of the limiting variance σ 2

1 (f ) whereas in the finite-
horizon approach, one really needs to have a precise idea of ρ to fix the value
of T .
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For instance, for a gradient-diffusion, dXt = −∇U(Xt) dt + σ dWt with a C2

strictly convex potential U :Rd →R, we can fix ρ = α =minx∈Rd λD2U(x) where
for a symmetric matrix A, λA is the lowest eigenvalue of A. This estimate is sat-
isfying for the Ornstein–Uhlenbeck process since D2U is constant. However, in
some less regular settings (where for instance, λD2U(x) is close to 0 in some areas
of the space), this parameter ρ can be estimated but may be very pessimistic. Fi-
nally, in the nonconvex example (6.5), ρ is clearly unknown and there is no natural
way to fix T so that the application of the previous result is not really possible.

In the same way, the long-time control of the L2-error and the constant c3
strongly depend on (Cs) and on the corresponding parameter α. Actually, let us
first recall that in a general nonergodic setting, this constant may dramatically in-
crease with T . The existence of a c3 independent of T under (Cs) means that the
true and discretized Euler schemes get closer when T increases with the help of
the contraction involved by the drift term. In fact, the parameter c3 is the finite-
horizon counterpart to σ 2

2 (f ). Without going into details, let us remark that an ex-
plicit computation of c3 would involve the pessimistic parameter α whereas σ 2

2 (f )

seems to be a more robust and realistic parameter since it is averaged over the in-
variant distribution.

SUPPLEMENTARY MATERIAL

Supplement to “Weighted multilevel Langevin simulation of invariant mea-
sures”. (DOI: 10.1214/17-AAP1364SUPP; .pdf). In order to improve the readabil-
ity of the current article, several technical proofs have been postponed in a supple-
mentary document. In the case in point, the precise reference is given at the end of
the proposition.
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