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a b s t r a c t 

A probabilistic reconstruction of genealogies in a polyploid population (from 2x to 4x) is investigated, by 

considering genetic data analyzed as the probability of allele presence in a given genotype. Based on the 

likelihood of all possible crossbreeding patterns, our model enables us to infer and to quantify the whole 

potential genealogies in the population. We explain in particular how to deal with the uncertain allelic 

multiplicity that may occur with polyploids. Then we build an ad hoc penalized likelihood to compare 

genealogies and to decide whether a particular individual brings sufficient information to be included 

in the taken genealogy. This decision criterion enables us in a next part to suggest a greedy algorithm 

in order to explore missing links and to rebuild some connections in the genealogies, retrospectively. As 

a by-product, we also give a way to infer the individuals that may have been favored by breeders over 

the years. In the last part we highlight the results given by our model and our algorithm, firstly on a 

simulated population and then on a real population of rose bushes. Most of the methodology relies on 

the maximum likelihood principle and on graph theory. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

.1. Motivations 

Pedigrees depict the genealogical relationships between individ-

als of a given population. They can be built thanks to mating

nowledge or they can be inferred from molecular markers. The

dentification of pedigrees allows a broad variety of applications:

enealogy identification, like in grapevine ( Lacombe et al., 2013 ),

mprovement of conservation programs for endangered species

 Lucena-Perez et al., 2018 ), inference of statistics used in quanti-

ative and population genetics like heritability or population effec-

ive size ( Ackerman et al., 2017; Kong et al., 2015 ), etc. Like for

ost population genetics analyses, pedigree reconstruction meth-

ds and their implementation were firstly developed for diploid

pecies (but see Wang and Scribner, 2014 ). Polyploids, i.e. species

ith more than two alleles for a given locus, represent approxi-

ately 25% of plant species ( Barker et al., 2016 ), and among them

 large number of cultivated species. Polyploidy in animals is more

are but some examples were described in insects, fishes, amphib-

ans and reptiles ( Mable et al., 2011; Otto and Whitton, 20 0 0 ). 
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Several strategies were used to reconstruct the genealogical re-

ationships from molecular markers (reviewed in Jones and Ar-

ren (2003) ). Exclusion methods eliminate potential parents which

o not show at least one allele per locus shared with a putative

ffspring. If more than two parents are possible, categorical allo-

ation methods allow identification of the most likely parents ac-

ording to their probability to transmit alleles shared with the po-

ential progeny. Parental reconstruction methods use full- or half-

iblings in order to identify the most likely parents. By comparison,

ibling reconstruction methods add a preliminary step of inference

f siblings when they are unknown. In this paper, the objective is

o adapt and to extend the approach of Chaumont et al. (2017) ,

amely to determine for each individual the most likely couple of

arents amongst all older individuals, so as to build some family

rees in polyploid plant species. Our study certainly intends to be

pplied on real genetic datasets, in particular the main practical

otivation is to find some retrospective links in a population of

ose bushes that will now be described. 

The empirical dataset used in the last section of this article

as obtained on cultivated roses bred mainly during the nine-

eenth century ( Rosa sp.). Rose breeding activities were particu-

arly abundant during the nineteenth century and were very doc-

mented. As an example, breeding year is known for a majority

f roses from this period. However, the genealogical relationships

escribed in archives are highly hypothetical, due to the lack of

ontrol of artificial hybridization until the end of the nineteenth
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century. Among the approximately 200 species of the genus Rosa ,

ploidy level varies between 2x and 10x ( Jian et al., 2010 ). Rose

breeding activities from the nineteenth century involved interspe-

cific crossings between diploid species and tetraploid species, with

a small contribution of genotypes with higher ploidy like species

from the Caninae section (4x, 5x and 6x) ( Liorzou et al., 2016;

Oghina-Pavie, 2015 ). Cultivated roses bred during the nineteenth

century can exhibit all ploidy values between 2x and 6x, even

if 5x and 6x are rare ( Liorzou et al., 2016 ). The mode of inheri-

tance in these rose cultivars remains highly unknown. It is gen-

erally considered that modern tetraploid cultivated roses exhibit

a tetrasomic inheritance (no preferred pairing among the set of

four homologous chromosomes and creation of tetravalents during

meiosis) ( Koning-Boucoiran et al., 2012 ). But a mixture of disomic

(preferred pairing of two bivalent pairs during meiosis according

to their genomic similarity) and tetrasomic inheritance could be

observed according to chromosomes and according to genotypes

( Bourke et al., 2017 ). Triploid roses have played a major role in

rose hybridizations. Like in other species, triploid roses exhibit a

low fertility rate, due to irregular meiosis leading to aneuploidy

( Maia and Venard, 1976 ). However, even if the production of fertile

gametes from triploids remains rare, these events were selected by

breeders, especially as bridges between different ploidy levels. For

example, Bourbon , Hybrid China and Hybrid Tea rose groups were

both obtained by a cross between a Chinese diploid cultivar and

a European tetraploid cultivar. First cultivars from these groups

were triploid ( Gudin et al., 20 0 0 ). Triploids form both haploid and

diploid gametes ( Van Huylenbroeck et al., 2005 ). Following the ob-

tention of a variety by hybridization, it was then propagated veg-

etatively by cutting or grafting and often conserved in rose gar-

dens. Therefore rose varieties can be considered as immortal and

they could have been involved at different periods in rose pedi-

grees. As most of plants, roses are hermaphrodites and can there-

fore have been used as female or male on different hybridization

events. Selfing rate in roses is very low mainly because of self-

incompatibility ( Raju et al., 2013 and J. Mouchotte, pers. comm.).

These specific breeding behaviors are the cornerstone of our prob-

abilistic model. 

In a general way, the polyploidy of the population may give rise

to complications in terms of multiplicity of the alleles, being only

aware of their presence or absence: that will be one of our strate-

gic challenges to deal with this lack of information, widely dis-

cussed throughout the manuscript. Whereas for diploids the pres-

ence or absence of alleles is sufficient – for { a } and { a , b } un-

doubtedly correspond to { a , a } and { a , b } – the observation of { a ,

b } for a tetraploid can correspond to { a , a , a , b }, { a , a , b , b } or

{ a , b , b , b }. Reading the presence or absence of alleles on elec-

trophoregrams and interpreting theoretical ratios between peak in-

tensities is an option to determine the number of copies of each

allele ( Esselink et al., 2004 ). Unfortunately, we will explain in good

time the reasons why this strategy is not reliable in our context

and we will introduce a way to deal with this allelic multiplicity

through the intermediary of probabilities related to each configu-

ration. Before getting to the heart of the matter, let us point out

that the objective of this work is not to introduce a biological is-

sue, but rather to build and justify the more realistic mathematical

framework regarding the biological model of roses bred during the

nineteenth century. This work is above all a methodological one. 

The paper is organized as follows. In Section 2 , we present a

probabilistic method in order to reconstruct genealogies for species

with several ploidy levels, from 2x to 4x, by considering genetic

data analyzed as the probability of allele presence in a given geno-

type. In particular, we compute the likelihood associated with all

crossbreeding patterns and we explain how to build and quan-

tify the whole possible genealogies of the population and how to

treat the unknown allelic multiplicity. As a by-product we also
ive a way to find the individuals favored by breeders, retrospec-

ively. Section 3 treats the isolated individuals, more precisely,

he missing links. Under some criteria, we suggest an algorithm

omputing virtual individuals to improve the genealogy. Whereas

ections 2 and 3 are mainly theoretical, all our results will be

ested in Section 4 , both on a simulated population and on a rose

ushes population. We conclude by highlighting some weaknesses

f our methodology and by giving, in accordance, some trails for

uture studies. 

.2. Preliminary considerations and notations 

In the whole paper, P stands for the population of size n =
ard (P) and m is the number of genes involved in the reconstruc-

ion process. Technically, m corresponds to the number of signals

n which we read the peaks , expressing the set of alleles detected

n each gene. We make the crucial hypothesis that signals are

utually independent , which can be argued on a genetic as well

s statistical point of view (genes are chosen for their absence of

nown interaction and a prior statistical treatment tends to decor-

elate them by eliminating material-type influences). For an indi-

idual e ∈ P, we denote by g s ( e ) the genotype of gene s , that is, the

et of alleles present for this gene, shortened in g ( e ) when we deal

ith an unspecified gene (to be precise, we should in fact speak of

ultiset since we may have multiple instances of the same allele

n the genotype, however we shall not make these kind of distinc-

ions). We also denote by x (e ) = Card (g(e )) ∈ { 2 , 3 , 4 } the ploidy of

 , the number of sets of chromosomes in a cell. In addition, we

ssume that the birth dates are known and that no death occurs,

hich is consistent with the fact that the work is related to plant

ultivars. We also assume that gametes are produced according to

trict polysomic inheritance and we neglect double reduction. 

. Likelihood of a genealogy 

This section is the heart of the paper. Firstly we will describe

he genetic patterns that we retain to cross the polyploid individ-

als, and we will discuss the probabilistic treatment of the allelic

ultiplicity that may appear for triploids and tetraploids. There-

fter, we will be in the position to estimate some retrospective

inks and to compute an ad hoc penalized likelihood for the ge-

ealogy. Before anything else, let us begin with a formal descrip-

ion of what we mean by genealogy and likelihood. A genealogy is

n element of the set 

(P) = 

∏ 

e ∈ P 

{
T (e ) ∪ (e, ∅ ) 

}
where T (e ) = 

⋃ 

s ∈ S(e ) 

(e, s ) 

(2.1)

nd where S(e ) , as will be detailed in good time (see beginning of

ubsection 2.3 ), is the set of non-ordered pairs candidates to the

enealogy of e . In concrete terms, an individual e is associated with

ach couple of possible parents S(e ) together with ∅ , to cover the

ase where T (e ) = ∅ , that is where no triplet offspring/couple of

arents can be found in the population for e . Thus, a genealogy T 
n P = { e 1 , . . . , e n } takes the form of 

 = 

{
(e 1 , s 1 ) , (e 2 , s 2 ) , . . . , (e n , s n ) 

}
(2.2)

n which s i is either an element of S(e i ) , either ∅ . It has clearly

 structure of graph, as will be explained later. Now, looking at T 
s the realization of a discrete random vector taking values in the

et ϒ(P) , it naturally follows that the likelihood of a genealogy is

he probability that it has to be observed, in accordance with the

tatistical usual definition, given a model and a set of hypotheses

hat will be described in this section. It should also be noted that a

aximum likelihood genealogy, as will be largely discussed later, is
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Fig. 1. Schematic representation of the gametes production (in the bottom) for a 

diploid cell (in the top). Symbols represent the alleles of a given gene on its chro- 

mosome (line). 

Fig. 2. Schematic representation of the gametes production (in the bottom) for a 

triploid cell (in the top). Symbols represent the alleles of a given gene on its chro- 

mosome (line). 
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Fig. 3. Schematic representation of the gametes production (in the bottom) for a 

tetraploid cell (in the top). Symbols represent the alleles of a given gene on its 

chromosome (line). 
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ot an estimator in the statistical sense, but the value of T ∈ ϒ(P)

aving the biggest probability, with respect to the model. 

.1. Crossbreeding patterns 

To simplify the combinatorial analysis, we use the following

atural models. Diploids produce haploid gametes, genotype { a , b }

eads to gametes { a } and { b } with probability 1. Triploids produce

aploid and diploid gametes, genotype { a , b , c } leads to gametes

 a } and { b , c } with probability 1 
3 , gametes { b } and { a , c } with prob-

bility 1 
3 and gametes { c } and { a , b } with probability 1 

3 . Tetraploids

roduce diploid gametes, genotype { a , b , c , d } leads to gametes { a ,

 } and { c , d } with probability 1 
3 , gametes { a , c } and { b , d } with

robability 1 
3 and gametes { a , d } and { b , c } with probability 1 

3 . In

ddition, each individual can either be male or female, the set of

ametes is treated as an urn problem . Crossing is made by choos-

ng at random two gametes among all these possibilities, bring-

ng them together to obtain the offspring’s genotype. Figs. 1–3 are

chematic representations of the gametes production, indicated by

rrows, of a parent cell. 

Let p 1 and p 2 be two individuals having ploidies x ( p 1 )

nd x ( p 2 ) with genotypes g(p 1 ) = { a 1 , . . . , a x (p 1 ) 
} and g(p 2 ) =

 b 1 , . . . , b x (p 2 ) 
} , respectively. In the sequel, p 1 and p 2 are the par-

nts of the offspring e . The different ploidy levels lead to six pat-

erns that we are now going to describe in detail. 

(P 1 ) x (p 1 ) = x (p 2 ) = 2 . Let g(p 1 ) = { a 1 , a 2 } and g(p 2 ) = { b 1 , b 2 } .
Then, e has 4 potential diploid genotypes g(e ) = { a i , b k } , for

i , k ∈ {1, 2}. Each one has probability 1 
4 . 

(P 2 ) x (p 1 ) = 2 and x (p 2 ) = 3 . Let g(p 1 ) = { a 1 , a 2 } and g(p 2 ) =
{ b , b , b } . Then, e has 6 potential diploid genotypes g(e ) =
1 2 3 
{ a i , b k } , and 6 potential triploid genotypes g(e ) = { a i , b k , b � } ,
for i ∈ {1, 2} and k , � ∈ {1, 2, 3}. Each one has probability 1 

12 . 

(P 3 ) x (p 1 ) = 2 and x (p 2 ) = 4 . Let g(p 1 ) = { a 1 , a 2 } and g(p 2 ) =
{ b 1 , b 2 , b 3 , b 4 } . Then, e has 12 potential triploid genotypes

g(e ) = { a i , b k , b � } , for i ∈ {1, 2} and k , � ∈ {1, 2, 3, 4}. Each one

has probability 1 
12 . 

(P 4 ) x (p 1 ) = x (p 2 ) = 3 . Let g(p 1 ) = { a 1 , a 2 , a 3 } and g(p 2 ) =
{ b 1 , b 2 , b 3 } . Then, e has 9 potential diploid geno-

types g(e ) = { a i , b k } , 18 potential triploid genotypes

g(e ) = { a i , b k , b � } or g(e ) = { a i , a j , b k } , and 9 potential

tetraploid genotypes g(e ) = { a i , a j , b k , b � } , for i , j , k , � ∈ {1, 2,

3}. Each one has probability 1 
36 . 

(P 5 ) x (p 1 ) = 3 and x (p 2 ) = 4 . Let g(p 1 ) = { a 1 , a 2 , a 3 } and g(p 2 ) =
{ b 1 , b 2 , b 3 , b 4 } . Then, e has 18 potential triploid genotypes

g(e ) = { a i , b k , b � } , and 18 potential tetraploid genotypes

g(e ) = { a i , a j , b k , b � } , for i , j ∈ {1, 2, 3} and k , � ∈ {1, 2, 3, 4}.

Each one has probability 1 
36 . 

(P 6 ) x (p 1 ) = x (p 2 ) = 4 . Let g(p 1 ) = { a 1 , a 2 , a 3 , a 4 } and g(p 2 ) =
{ b 1 , b 2 , b 3 , b 4 } . Then, e has 36 potential tetraploid genotypes

g(e ) = { a i , a j , b k , b � } , for i , j , k , � ∈ {1, 2, 3, 4}. Each one has

probability 1 
36 . 

To sum up, all diploid offsprings may come from patterns (P 1 )–

P 2 )–(P 3 ), all triploid offsprings from patterns (P 2 )–(P 3 )–(P 4 )–(P 5 )

nd all tetraploid offsprings from patterns (P 4 )–(P 5 )–(P 6 ). One can

emark that the trickiest case is probably (P 4 ) since three differ-

nt ploidies can be generated by crossing triploids, Fig. 4 gives

 streamlined representation of it. Now let {( p 1 , p 2 ) �→ e } be the

vent through which the pair ( p 1 , p 2 ) conceives e , let u denote the

aximum number of different genotypes generated by the pattern

 u = 4 , u = 12 or u = 36 ) corresponding to the ploidy of p 1 and p 2 ,

nd let e 1 , . . . , e u name the potential offsprings of the cross. Our

ypotheses show that, conditionally on the knowledge of the geno-

ypes of the parents, each offspring is drawn through a uniform

istribution. So, we set 

 ({ (p 1 , p 2 ) �→ e } | { g(p 1 ) , g(p 2 ) , g(e ) } ) = 

1 

u 

u ∑ 

r=1 

1 { e r = e } (2.3)

here the genetic equality e r = e means that g ( e r ) and g ( e ) coin-

ide in a sense that we have to define. Specifically, we consider

hat e r = e once 

(e r ) = g(e ) and hence x (e r ) = x (e ) (2.4)

hich in this case amounts to say that e r and e have the same

loidy and the same set of alleles (we remind that x = Card (g) ).

owever, it is important to highlight that (2.4) is only relevant

rom theoretical perspectives or on simulated data. We will see

n Section 4.2 that real genotypes result from a calibration of the
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Fig. 4. Schematic representation of pattern (P 4 ) leading to u = 36 potential offsprings including 9 diploids, 18 triploids and 9 tetraploids. Symbols represent the alleles of a 

given gene. 
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equipment and some rounded values to be interpreted as base

pairs . Therefore, 

x (e r ) = x (e ) and ‖ g ∗(e r ) − g ∗(e ) ‖ ∞ 

� 1 (2.5)

where g ∗ stands for an ascending sorted vector containing the el-

ements of g , should be an appropriate comparison on such data.

Indeed, this criterion allows an offset of ± 1 base pairs for two

corresponding alleles. 

Examples. To illustrate this calculation method, let us consider

g(p 1 ) = { a, a } and g(p 2 ) = { a, b} . Then u = 4 , the potential off-

springs have genotypes g(e 1 ) = g(e 3 ) = { a, a } and g(e 2 ) = g(e 4 ) =
{ a, b} . For g(e ) = { a, a } or g(e ) = { a, b} , formula (2.3) gives proba-

bility 1 
2 . It also gives probability 0 for all other genotypes. In the

more intricate case where g(p 1 ) = { a, a, b, c} and g(p 2 ) = { a, c, c} ,
then u = 36 and among the potential offsprings, 5 will have geno-

type g(e ) = { a, b, c} . Formula (2.3) gives probability 5 
36 for such a

triploid offspring. 

2.2. Allelic multiplicity 

For an individual e ∈ P, the set g ( e ) is the true genotype. How-

ever in our experimental studies, we only observe a partial geno-

type ̂  g (e ) ⊂ g(e ) containing the distinct alleles – a set of peaks on

the signal. Taking advantage of the ploidy x ( e ), one is able to infer

all possible g ( e ) from 

̂ g (e ) . Explicitly, we use the following con-

nections, where π names a probability of multiplicity in a generic

way. 

(C 1 ) ̂ g (e ) = { a } and x (e ) = 2 leads to g(e ) = { a, a } with probabil-

ity 1. 

(C 2 ) ̂ g (e ) = { a, b} and x (e ) = 2 leads to g(e ) = { a, b} with proba-

bility 1. 

(C 3 ) ̂ g (e ) = { a } and x (e ) = 3 leads to g(e ) = { a, a, a } with proba-

bility 1. 

(C 4 ) ̂ g (e ) = { a, b} and x (e ) = 3 leads to g(e ) = { a, a, b} with prob-

ability π21 and to g(e ) = { a, b, b} with probability π12 . We

set π21 + π12 = 1 . 

(C 5 ) ̂ g (e ) = { a, b, c} and x (e ) = 3 leads to g(e ) = { a, b, c} with

probability 1. 

(C 6 ) ̂ g (e ) = { a } and x (e ) = 4 leads to g(e ) = { a, a, a, a } with prob-

ability 1. 

(C 7 ) ̂ g (e ) = { a, b} and x (e ) = 4 leads to g(e ) = { a, a, a, b} with

probability π31 , g(e ) = { a, a, b, b} with probability π22 and

g(e ) = { a, b, b, b} with probability π13 . We set π31 + π22 +
π = 1 . 
13 
(C 8 ) ̂ g (e ) = { a, b, c} and x (e ) = 4 leads to g(e ) = { a, a, b, c} with

probability π211 , g(e ) = { a, b, b, c} with probability π121 and

g(e ) = { a, b, c, c} with probability π112 . We set π211 + π121 +
π112 = 1 . 

(C 9 ) ̂ g (e ) = { a, b, c, d} and x (e ) = 4 leads to g(e ) = { a, b, c, d} with

probability 1. 

Instead of selecting a genotype for e when several are con-

eivable, that is, for combinations (C 4 )–(C 7 )–(C 8 ), the model that

e introduce in the next section takes account of all possibilities

eighted by their related probabilities. In fact, our model enables

s to choose if necessary π = π(s ) gene by gene or, equivalently,

ignal by signal, to consider the different interpretations of the rel-

tive amplitude of the peaks on each signal, for material reasons.

e will describe it in more details in the beginning of Section 4.2 .

.3. Probability of a genealogical link 

For any individual e ∈ P, as it has been outlined in the intro-

uction of the section, let S(e ) ⊂ P 

2 be the compatible subpopula-

ion, that is, the set of non-ordered pairs ( p 1 , p 2 ) with p 1 
 = p 2 (ex-

luding selfing) genetically and chronologically candidates to the

enealogy of e . It is worth noting that the only chronological con-

traint is obviously to consider that birth dates of descendants can-

ot be prior to the ones of their parents. In particular, the proba-

ilities of ancestry are considered as time-invariant : any individ-

al has the same probability of being a parent, regardless of its

irth date, excluding de facto any generational model like Galton-

atson trees. This point of view is specific to plant species, and

ould clearly be irrelevant for animal populations. Whether the in-

ividual was obtained during the decade preceding the birth date

f the offspring, or several centuries ago, because of the immor-

ality and constant fertility given by a vegetative propagation, we

ssume that the probability of ancestry is the same. Our objective

s to build a probability measure on S(e ) ∪ { ∅ } quantifying the

hole possible genealogical links of e , the element ∅ being added

o cover the case where no parents can be found in the population.

he hypothesis of mutual independence of the signals allows us to

ork on each signal and to multiply the results. Let 

(e, p 1 , p 2 ) = 

m ∏ 

s =1 

∑ 

G ∈ G s 
P ({ (p 1 , p 2 ) �→ e } | G ) P (G ) (2.6)

here G s is the set of all possible genotypes on signal s for the

riplet ( e , p 1 , p 2 ). In the best-case scenario, Card (G s ) = 1 which

eans that ̂ g s (p ) , ̂ g s (p ) and 

̂ g s (e ) lead to no uncertain allelic
1 2 
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ultiplicity, and thus P (G ) = 1 . At worst, Card (G s ) = 27 meaning

hat ̂ g s (p 1 ) , ̂ g s (p 2 ) and ̂

 g s (e ) are in the situation (C 7 ) or (C 8 ), and

 (G ) is the product of the related probabilities. 

Example. Suppose that x (p 1 ) = 3 , x (p 2 ) = 4 , x (e ) = 4 and that,

n a particular signal s , we observe ̂ g s (p 1 ) = { a, b} , ̂ g s (p 2 ) =
 a, c, d} and 

̂ g s (e ) = { a, d} . Then, Card (G s ) = 18 . Indeed, we build

 s by combining { a , a , b } and { a , b , b } for p 1 , { a , a , c , d }, { a , c , c , d }

nd { a , c , d , d } for p 2 , and { a , a , a , d }, { a , a , d , d } and { a , d , d , d } for

 . For the first combination we have P (G ) = π(s ) 
21 

π(s ) 
211 

π(s ) 
31 

, for the

econd one P (G ) = π(s ) 
21 

π(s ) 
211 

π(s ) 
22 

, and so on. 

It only remains to renormalize. Explicitly, with 

(e ) = 

∑ 

(p 1 ,p 2 ) ∈ S(e ) 

δ(e, p 1 , p 2 ) (2.7)

here δ( e , p 1 , p 2 ) is given in (2.6) , let 

 (p 1 , p 2 ) ∈ S(e ) , νe ((p 1 , p 2 )) = 

{
δ(e,p 1 ,p 2 ) 

�(e ) 
if �(e ) > 0 

0 otherwise 

(2.8) 

nd fix νe (∅ ) = 1 as soon as �(e ) = 0 , and νe (∅ ) = 0 otherwise.

hen clearly, νe : S(e ) ∪ { ∅ } → [0 , 1] is a probability measure that

an be applied to look for the whole genealogy of e ∈ P . To build

he most likely genealogy , we must pick 

 

∗(e ) = arg max 
c ∈ S(e ) ∪ { ∅ } 

νe (c) . (2.9)

o be precise, c ∗( e ) defined as above is not necessarily unique, in

uch case we arbitrarily pick one optimum at random. We will see

n the sequel that choosing a genealogical link amongst others is

ot necessarily relevant, hence we also consider 

 (e ) = { c ∈ S(e ) ∪ { ∅ } | νe (c) > 0 } (2.10) 

hich represents the whole potential genealogical links of e in our

opulation P . 

.4. A retrospective family tree 

Now the objective is to compute G ( e ) – and thus c ∗( e ) – for all

 ∈ P . In the framework of this study, a family tree T of the pop-

lation P is a set of triplets ( e , p 1 , p 2 ) having νe (( p 1 , p 2 )) > 0 as

robabilities, on the basis of m genes, such that there is at most

ne triplet ( e , p 1 , p 2 ) for any individual e , interpretable as the re-

lization of the event {( p 1 , p 2 ) �→ e }, taking up the notation of the

revious sections. We also require that a triplet ( e , p 1 , p 2 ) is as-

igned to the node e of the family tree as soon as c ∗(e ) 
 = ∅ , that

s as soon as there exists at least one potential genealogical link for

 . To make the connection with our formal introduction, a family

ree T completed by (e, ∅ ) for each e such that c ∗(e ) = ∅ is merely

 genealogy as it is defined in (2.2) . In an equivalent way, we build

 graph in which each individual is a vertex and each genealogical

ink is a couple of arcs (from the parents to the offspring). Note

hat the chronological constraint applied on S(e ) is sufficient to

nsure that no cycle is present in the graph. The methods and al-

orithms that follow will be tested and applied in Section 4 . 

.4.1. Most likely trees 

Combining all options of G ( e ) for each e ∈ P gives an exhaus-

ive set of trees, all potential genealogies of the population that

e will denote as G (P) in (2.13) . However, on large datasets, this

an be difficult due to the exponential growth of the combinations.

hus we look for criteria of selection, and first we define the log-

ikelihood of a family tree T as follows, 

 (T ) = 

∑ 

(e,p 1 ,p 2 ) ∈ T 
ln νe ((p 1 , p 2 )) . (2.11)
ote that this expression corresponds to the likelihood of a geneal-

gy as we have defined it beforehand, under the crucial hypothesis

hat each triplet offspring/couple of parents is independent of any

ther, which once again is specific to plant species. Clearly P can

e divided into L = { e ∈ P | c ∗(e ) 
 = ∅ } and I = { e ∈ P | c ∗(e ) = ∅ } ,
espectively the individuals having potential ancestors in the pop-

lation, present as nodes in all family trees built according to our

onstraints, and the ones for which we have not been able to find

ny genealogical link, that we will describe as isolated . Our model

uarantees that maximizing � (T ) amounts to locally maximizing

he log-probability of each link. To sum up, 

max 
 ∈ϒ(P) 

� (T ) = 

∑ 

e ∈ L 
ln νe (c ∗(e )) (2.12)

nd this upper bound is reached by the tree T ∗ built on all

 ∈ L associated with the pairs c ∗( e ). We shall note that formula

2.12) does not necessarily highlight a unique family tree, for some

airs ( p 1 , p 2 ) may have the same probability of producing e . In this

ase, the maximization problem has more than one solution. 

.4.2. Number of offsprings 

Suppose now that the population is small enough to be able to

ompute 

 (P) = 

∏ 

e ∈ P 
G (e ) (2.13)

here G ( e ) is given in (2.10) . Namely, G (P) contains the exhaustive

et of potential genealogies of the population. Due to the combi-

ation of the options of all G ( e ), Card (G (P)) may be very large.

n fact such a Cartesian product is only conceptual, but quickly

ntractable for practical purposes leading to combinatorial explo-

ions. Therefore, a threshold probability must be used to select the

enealogies of G (P) . Concretely, we can replace the definition of

 ( e ) in (2.10) by the more stringent 

 (e ) = { c ∈ S(e ) ∪ { ∅ } | νe (c) > πmin } (2.14) 

or a given choice of 0 ≤πmin < 1, and the construction of G (P)

ccordingly. If we define N ( i ) as a random variable counting the

ffsprings of i ∈ P, then it could be interesting to give an estima-

ion of its probability distribution so as to infer, retrospectively, the

ndividuals favored by breeders. Our model directly suggests to use

 k ∈ N , ̂ P (N(i ) = k ) = 

∑ 

g∈G (P) 

w g 1 { n g (i ) = k } (2.15)

here n g ( i ) is the number of offsprings of i in the genealogy g and

 g is a weighting of the genealogy that can naturally be defined as

he ratio between its likelihood and the sum of all likelihoods, i.e.

 g = 

e � (g) 

L (P) 
with L (P) = 

∑ 

h ∈ G (P) 

e � (h ) (2.16)

eeping the notation of (2.11) . It follows that 

 

 [ N(i )] = 

∑ 

g∈G (P) 

w g n g (i ) (2.17)

ay be a useful tool to decide whether i has been favored by

reeders, by comparison with the global mean value and a clas-

ical outlier threshold . This approach will be illustrated on the rose

ushes population of Section 4.2 . 

Example. Consider a set of 4 genealogies of likelihood 0.8, 0.6,

.1 and 0.02, among which an individual i has 0, 1, 1 and 2 off-

prings, respectively. Then we propose estimating ̂ P (N(i ) = 0) ≈
 . 526 , ̂  P (N(i ) = 1) ≈ 0 . 461 , ̂  P (N(i ) = 2) ≈ 0 . 013 and ̂

 P (N(i ) > 2) =
 . For this individual, ̂  E [ N(i )] ≈ 0 . 487 . 

To look at pairwise relationships in the population, it can also

e meaningful to build a genealogical graph made of all possi-

le (weighted) links. In such a graph, we are not interested in
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the triplets offspring/couple of parents, but only in the pairs off-

spring/parent. For all (i, j) ∈ P 

2 and the same weights as in (2.16) ,

consider 

 i → j = 

∑ 

g∈G (P) 

w g 1 { (i → j) ∈ g} (2.18)

where {( i → j ) ∈ g } means that i is a parent of j in the genealogy g .

The directed and weighted graph built on W i → j amounts to the

superposition of all genealogies except that the viewpoint is differ-

ent: edges are not considered in pairs, but each one has a role of

its own. However it is worth noting that, according to this model,

the outflow from an individual is precisely its averaged number

of offsprings (2.17) . Thus, these two approaches are numerically

equivalent but they differ from the interpretation. 

2.4.3. Comparison of trees 

For a fixed population of size n , since each tree contains the

same number of links, maximizing the likelihood via (2.11) seems

a suitable criterion. However, it cannot be trusted to compare

trees with a different number of links. To understand this, let

P i = P ∪ { i } be the same population enhanced with a new individ-

ual, from the last generation, such that δ( i , p 1 , p 2 ) > 0 for at least

two pairs (p 1 , p 2 ) ∈ S(i ) , for these pairs we get ln ν i (( p 1 , p 2 )) < 0,

implying that � (T ) > � (T i ) , where T and T i are the family trees

maximizing the likelihood on P and P i , respectively. In other

words, this criterion favors T rather than T i whereas there exists

a link between some individuals of P and i . In order to overcome

this negative impact, as soon as we have to compare family trees

on two populations P and P i such that P i = P ∪ { i } , we suggest to

consider a trade-off like 

� ∗(T i ) = � (T i ) + �(i ) (2.19)

where � (T i ) is the log-likelihood given by (2.11) of the genealogical

tree T i on P i containing i , and �( i ) is a measure of the interaction

ability of the new individual i with P . Whence, to decide whether i

has to be added into the genealogy, it will be possible to compare

� ∗(T i ) and � (T ) for the most likely tree T built on P, provided

a suitable adjustment of �( i ). In this way, we intend to compen-

sate the mechanical decrease of the log-likelihood due to the ac-

cumulation of potential links including i . This penalization of the

log-likelihood is a strategy similar to the well-known AIC and BIC

criteria. In the next section, when looking for missing individuals

that could improve the family tree, we will see how to give a suit-

able explicit form to � according to our purposes. 

3. Missing links 

Recall that our model assumes that no death occurs, which, as

we have seen, is consistent with the fact that the work is related

to perennial plant cultivars with asexual multiplication. However,

individuals are obviously missing in the population – because they

represent intermediate individuals never recorded as a cultivar and

never distributed by the breeder, because the cultivar disappeared

from rose gardens deliberately or accidentally, or because it was

not sampled in the study. In this section, our objective is to look

for some missing links . Since we do not know exactly how many

individuals are missing, our strategy is to launch a greedy algo-

rithm that explores the population and tries to detect an excess

of information that might improve substantially the genealogy. The

combinatorial complexity leads us to focus on some particular ar-

eas for the algorithm. More precisely, it seems that the isolated

individuals are suitable starting points, for which we recall that

I = { e ∈ P | c ∗(e ) = ∅ } is the set of individuals having no parents

in the most likely genealogy. For all e ∈ I, let R (e ) ⊂ P be the in-

dividuals in the population chronologically candidates to the ge-

nealogy of e and able to produce a gamete compatible with e . In
ddition, for each p ∈ R (e ) , consider 

 

∗(e, p) = arg max 
i 

δ(e, p, i ) (3.1)

s it is defined in (2.6) , where i has the structure of an indi-

idual of the population (with a ploidy, a date of birth and a

et of alleles for each signal). Namely, i ∗( e , p ) is a virtual indi-

idual whose genotype maximizes the probability of the event

( p , i ) �→ e }, it can be seen as the “perfect partner” of p to produce

 . Given i = i ∗(e, p) , we now have to decide whether i significantly

mproves the genealogy. Let us carry on with the criterion intro-

uced in (2.19) , where the enhanced population is P i = P ∪ { i } . To

atch with our study, the penalization �( i ) must favor individu-

ls i providing the maximum number of interactions with P . As

e have seen in the last section, few interactions leave the like-

ihood almost unchanged whereas too many interactions tend to

epreciate it, this was our motivation to look for a trade-off. We

lso want to give priority to any individual i reducing the number

f connected components in the genealogy – that is, the number

f subgraphs in which all nodes are connected. Indeed, in view of

ur fundamental hypothesis that, except for ancestors, all parents

hould be present in an ideal population, we know that if we were

ble to access to the whole population, it would lead to a graph

ith few connected components (less than the number of ances-

ors, in any case). In this context, it seems natural to favor the re-

uction of the number of connected components, in order to get

loser of this true (but inaccessible) genealogy. Define T and T i as

he maximum likelihood trees on P and P i , respectively, and sup-

ose that i is contained in T i . Combining these requirements, we

an write the penalization in the form 

(i ) = λi 

r(i ) 

n 

− μi �C(i ) (3.2)

here r ( i ) is the number of individuals of P potentially interact-

ng with i , �C ( i ) is the difference between the number of con-

ected components in T and T i , λi ≥ 0 and μi ≥ 0 are regulariza-

ion parameters. Our decision rule consists in keeping an individ-

al i which satisfies � ∗(T i ) > � (T ) . We can formalize r ( i ) like 

(i ) = 

∑ 

p∈P 
η(i, p) 

here η(i, p) = 1 if one can find a ∈ P such that δ( i , a , p ) > 0, δ( a , i ,

 ) > 0 or δ( p , a , i ) > 0, that is, if there is a nonzero probability for at

east a link involving p and i , and η(i, p) = 0 otherwise. Note that

 may be an offspring of i as well as a parent or a partner of i to

e considered as an interaction involving i . To adapt our criterion,

e can choose 

i = 

n 

2 

| � (T ) − � (T i ) | (3.3)

ince this guarantees that � ∗(T i ) = � (T ) when the new individual

oes not bring any connection except the one for which it has

een created, not gathering connected components ( r(i ) = 2 and

C(i ) = 0 ), and thus when i should be rejected. A similar strat-

gy enables us to fix μi , for r(i ) = 2 must at least coincide with

C(i ) = −1 to make an interesting link. This is the case when i

as been created to fulfill the event {( p , i ) �→ e }, and when p and e

elong to different connected components. Of course that situation

ust be favored, and to simplify one can choose 

i = λi + 1 (3.4)

hich amounts to say that � ∗(T i ) > � (T ) whenever �C ( i ) < 0. To

nhance the population, we suggest the following algorithm. 

(0) Fix n v > 0 , the maximum number of virtual individuals al-

lowed to be inserted in the population. 

(1) Build R (e ) for all e ∈ I . 
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(2) For all p ∈ R (e ) , compute the maximum likelihood partner i

such that {( p , i ) �→ e } is achieved. 

(3) Among these candidates, add in P the individual maximizing

� ∗(T i ) provided 

max 
i 

� ∗(T i ) > � (T ) . 

Set t e − 1 as birth date of the new individual, where t e is the

one of e . 

(4) Recalculate the most likely tree T and the set I according to

the new population. 

(5) Repeat steps (1)–(4) as long as the criterion increases and

Card (P) < n + n v . 

Before going further, let us focus on the complexity of this algo-

ithm (and on some possible improvements). In the present state,

t is fully exploratory and starts from arbitrary points. In terms of

omplexity, it is possible to evaluate that step (4) has a number of

rosses in the range of O (n (n − 1)(n − 2)) to be tested. Generally

ard (I) is small, thus, even if it entirely depends on the popu-

ation, let us suppose that it is bounded by n i � n . The construc-

ion of R (e ) requires O (n − 1) crosses to be tested for a given e .

n the whole, we can roughly estimate that, considering a cross-

reeding as the unit of measurement, O (n v n i n (n − 1) 2 (n − 2)) op-

rations are needed. In practice, much less operations are actually

one since the symmetry and the chronological and genetical con-

traints cut a lot of paths. To reach a lower complexity, it should

e relevant to look at less exploratory methods, in order to deal

ith the increasing number of individuals. In addition, the max-

mum of likelihood in step (2) is the natural solution, but it can

lso have unwelcome effects. In particular, this algorithm can not

enerate any triploid. This follows from the fact that, whenever a

riploid produces a gamete, there exists a diploid or a tetraploid

hat produces the same gamete with a probability two times big-

er. In the same vein, the virtual tetraploids can either be homozy-

ous or heterozygous with only two distinct alleles. As a conse-

uence, since the individual is specifically created to fulfill a par-

icular crossbreeding, the situations where the missing link is a

arent of more than one offspring in the population can not be re-

overed, except if the offsprings are genetically similar. This could

e improved by testing not only the candidates, but also the mixes

etween them. For example, if { a , a , b , b } is added to explain the

resence of a diploid { a , b }, and if { c , c , d , d } is added to explain

he presence of another diploid { c , d }, then it could be interesting

o add { a , b , c , d } to explain both of them, instead. To conclude, we

ould like to highlight a last enhancement. Setting t e − 1 as date

f birth of the new individual is an arbitrary choice because, focus-

ng on the offspring, we do not have any more information about

he other interactions within the new genealogy. Each birth date

etween some initial time t 0 and t e − 1 should be tested as well.

ll these improvements are hardly conceivable due to the compu-

ational complexity, except for small populations ( n ≈ 50, as in our

imulations). Hence, as we can see, there are still numerous open

uestions to explore on the fundamental issue of the missing links.

. An empirical study 

The numerical processings were carried out through the R pro-

ramming language and its software environment. In particular, we

sed the package igraph 1 to display the graphs. In all figures of this

ection, the geometric shapes that we use are circles to represent

iploids, triangles for triploids and squares for tetraploids, gray

ndividuals are real whereas white individuals are virtual. Simi-

arly, we use solid lines for true links as well as dotted lines for
1 https://cran.r-project.org/web/packages/igraph/igraph.pdf 

s

�

he wrong links given by the model (unless noted otherwise). The

omputations are conducted via the uniform probabilities π21 =
12 = 

1 
2 and π31 = π22 = π13 = π211 = π121 = π112 = 

1 
3 . The esti-

ation of the mean number of offsprings is given by (2.17) and the

utlier threshold is chosen to the standard q 3 + 1 . 5 (q 3 − q 1 ) with

 1 and q 3 the first and third quartiles of a subset of observations.

t is computed using a moving window on the values in chronolog-

cal order and then extrapolated by a linear regression, to take into

ccount the time-invariance in the reproduction law and, thus, the

act that the older an individual is, the more offsprings he is likely

o have. 

.1. On a simulated population 

Consider the simulated population P whose detailed descrip-

ion is provided in the Appendix. To sum up, there are n = 54 in-

ividuals among which 17 diploids, 17 triploids and 20 tetraploids

ave interacted throughout 8 generations. The simulation relies on

 = 4 genes, dates of birth are known ( via the generations) as are

loidies and observed genotypes. The goal is to apply our model

n this population and to put the results into perspective, com-

ared with the true genealogy T 0 which is represented on the left

f Fig. 5 . 

.1.1. Family trees and most likely genealogy 

All genealogies found by the model have been superposed

n the right of Fig. 5 , that is, the full content of G ( e ) given in

2.10) for each e ∈ P . Similarly, we have also added in Fig. 6

he genealogical graph of the population as it is defined in

2.18) , highlighting the pairwise potential relationships. We can

rst verify that the ancestors (individuals from 1 to 10) are

nly parents. On the one hand, we observe that the true ge-

ealogy is included in the graph, illustrating thereby the effec-

iveness of the exploratory algorithm. One can also notice, on

he other hand, that some wrong links have been detected. We

hould however indicate that a wrong link is not an impossi-

le link, for the reader can check that dotted arcs correspond

o compatible crosses. Consider as an example the link {(14,

8) �→ 38} appearing in Fig. 5 but absent from the true genealogy.

e have x (14) = 3 , so ̂  g 2 (14) = { 160 , 170 , 180 } = g 2 (14) . Similarly,

ith x (28) = 4 and x (38) = 4 , ̂  g 2 (28) = { 210 , 290 } can correspond

o g 2 (28) = { 210 , 290 , 290 , 290 } and 

̂ g 2 (38) = { 160 , 170 , 290 } to

 2 (38) = { 160 , 170 , 290 , 290 } . Through pattern (P 5 ), a genealogical

ink is possible on the signal 2 and we easily check that the same

onclusion holds on each signal. This is an illustration of the fact

hat, from a practical point of view – namely, with an unknown

rue genealogy – it is preferable to produce a set of possible ge-

ealogies instead of a single one. Afterwards, the accumulation of

enes enables pruning of the trees, step by step, to reinforce the

emaining branches. To support this argument, Fig. 7 shows on

ts left the family tree T ∗ maximizing the log-likelihood (2.11) in

hich we observe that the true genealogy was not the most likely

ne, retrospectively. Let us have a look at the differences. The first

ne is the selection of {(14, 28) �→ 38} instead of {(14, 29) �→ 38}.

nowing that 28 and 29 both have parents (9,15), we easily un-

erstand their genetic likeness. The second one is interpreted in

he same way since {(8, 30) �→ 46} stands in for {(8, 18) �→ 46}, and

ince 18 is a parent of 30. For the last two ones, 13 takes the place

f 11 in the true connections {(11, 12) �→ 20} and {(11, 29) �→ 40}, 11

nd 13 having the same parents. To be precise, in the latter exam-

le each link leads to the same probability and the maximum of

ikelihood is not unique (in which case the algorithm chooses one

olution at random). On this dataset, we get 

 (T ∗) ≈ −3 . 052 > −7 . 616 ≈ � (T 0 ) . 

https://cran.r-project.org/web/packages/igraph/igraph.pdf
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Fig. 5. True genealogy T 0 of the simulated population, on the left. Superposition of all genealogies of the simulated population found by the model, on the right. 

Fig. 6. Genealogical graph of the simulated population, on the left. The thickness of the links is proportional to their weights in the model. Mean number of offsprings for 

each individual, on the right. The abscissa displays the individuals i ∈ P in chronological order and the ordinate represents the estimated expectation of N ( i ). The dotted line 

is the outlier threshold extrapolated from the crosses (the moving window goes through 22 observations). There is 1 probably favored individual. 
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Even so, wrong links maximizing the log-likelihood are usually rel-

evant. In this example, the wrong parents detected are in fact close

relatives of true parents. To sum up the results of this simulation,

amongst the 45 potential triplets that form the full genealogies, 34

are true and 11 are wrong, but all true links are correctly retrieved.

In the maximum likelihood genealogy, one can find from 30 to 32

true links and from 2 to 4 wrong links. The two links that can ei-

ther be true or wrong have equal probabilities, as it has just been

detailed. Even if it is of lesser interest on a simulation, Fig. 6 also

contains the estimated expectations of the number of offsprings in

the population, on the basis of all genealogies with no threshold

(πmin = 0) . The individual 42 appears as favored and, indeed, one

can check that it has 4 offsprings in the true genealogy whereas it

belongs to generation 5. In terms of mean error between the esti-

mated number of offsprings ̂ E [ N(i )] and the number of offsprings
 {  
 

∗( i ) in the maximum likelihood genealogy, 

1 

n 

∑ 

i ∈ P 

∣∣̂ E [ N(i )] − n 

∗(i ) 
∣∣ ≈ 8 . 52 × 10 

−2 and 

1 

n 

∑ 

i ∈ P 

(̂ E [ N(i )] − n 

∗(i ) 
)

2 ≈ 5 . 19 × 10 

−2 . 

.1.2. Missing links 

We now look for missing links, following the algorithm de-

cribed at the end of Section 3 with n v = 3 . Compared with

he most likely tree T ∗ on the population P, the largest in-

rease of our penalized criterion � ∗ given by (2.19) is reached

y adding the tetraploid g 1 (55) = { 20 0 , 20 0 , 20 0 , 20 0 } , g 2 (55) =
 270 , 270 , 270 , 270 } , g 3 (55) = { 370 , 370 , 370 , 370 } and g 4 (55) =
 410 , 410 , 520 , 520 } , respectively for the 4 genes, as a member of
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Fig. 7. Genealogy T ∗ maximizing the log-likelihood of the simulated population found by the model, on the left. There are 8 connected components. Genealogy T 1 maxi- 

mizing the log-likelihood of the simulated population enhanced with one individual (55) found by the model, on the right. There are 5 connected components. 

Fig. 8. Genealogy T 2 maximizing the log-likelihood of the simulated population enhanced with two individuals (55 and 56) found by the model, on the left. There are 4 

connected components. Genealogy T 3 maximizing the log-likelihood of the simulated population enhanced with three individuals (55, 56 and 57) found by the model, on 

the right. There are 3 connected components. 
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c  
eneration 5. We obtain the genealogy on the right of Fig. 7 . From

 connected components in T ∗, only 5 remain in the maximum

ikelihood tree T 1 on the population enhanced with the individ-

al 55 having this precise genotype. Thus its role as a missing

ink is clearly highlighted and that explains the reason why it

as been privileged, even if � (T 1 ) ≈ −3 . 106 has decreased com-

ared to � (T ∗) ≈ −3 . 052 . A second loop of the algorithm gen-

rates the tetraploid having g 1 (56) = { 10 , 10 , 20 0 , 20 0 } , g 2 (56) =
 130 , 130 , 380 , 380 } , g 3 (56) = { 210 , 210 , 370 , 370 } and g 4 (56) =
 430 , 520 , 520 , 520 } on its 4 genes, in generation 3. Only 4 con-

ected components remain, but the log-likelihood is now � (T 2 ) ≈
3 . 482 . The last loop of the algorithm gives a diploid g (57) =
1 
 90 , 90 } , g 2 (57) = { 220 , 220 } , g 3 (57) = { 310 , 310 } and g 4 (57) =
 510 , 510 } in generation 5. Only 3 connected components remain

hile, for this last addition, the log-likelihood is unchanged. Fig. 8

epicts T 2 and T 3 , respectively on the left and on the right.

his simulated example seems to clearly illustrate the operation

f the exploratory algorithm, focusing on connected components

o build missing links, retrospectively. To support the remarks of

ection 3 about the algorithm, suppose now that the diploid 49

s removed from the dataset. Then, amongst all virtual candi-

ates, a new diploid – say 49 ∗ – with genotype {240, 240}, {320,

20}, {410, 410} and {410, 410} appears in generation 6. One can

heck that this does not correspond to the real 49, but this new
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Fig. 9. Example of signal for a particular microsatellite marker. The individual i is tetraploid and two peaks have been detected. Here ̂  g (i ) is {132, 161} and g ( i ) is {132, 132, 

132, 161} with probability π31 , {132, 132, 161, 161} with probability π22 and {132, 161, 161, 161} with probability π13 . To simplify, scales are deliberately removed. 

Fig. 10. Superposition of all genealogies of the rose bushes subpopulation found by the model. 
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o  
genotype allows the cross {(49 ∗, 50) �→ 51} with a bigger proba-

bility than what actually occurred (precisely, 1 
2 × 1 × 1 

6 × 1 
12 < 

1 
2 ×

1 × 1 
6 × 1 

6 ). From this point of view, the algorithm is consistent

since there is no way we can retrieve the true allele 510 instead,

not spread elsewhere. However, if the diploid 1 is removed from

the dataset, then, because it is involved in numerous relationships

and because it is heterozygous in most cases, a unique individual

playing the same roles is not recovered. For example, on signal 1

and 4, alleles 20 and 310 are needed for {(1, 2) �→ 13} whereas 10

and 320 are needed for {(1, 2) �→ 11}. The algorithm suggests an

individual {20, 20} and {310, 310} and another one {10, 10} and
320, 320} on these signals, because they maximize the likelihood

f the crossbreedings with 2 to produce 11 and 13. In the end,

ll genetic information is retrieved but, to be improved, the pro-

ess should also mix the candidates beforehand, considering {10,

0} and {310, 320} in this case, as we have mentioned it in the

nhancements. 

.2. On a rose bushes population 

To conclude the study, we are now going to launch our model

n a subpopulation of rose bushes collected on the basis of m = 4
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Fig. 11. Genealogical graph of the rose bushes subpopulation. The thickness of the links is proportional to their weights in the model. The dotted lines correspond to 

potential links set to zero by the threshold probability. 
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enes. We start by giving some explanations about the experimen-

al gathering of the data. Among molecular markers, microsatel-

ite markers are still a reference for pedigree reconstruction be-

ause they are highly multiallelic codominant markers ( Jones and

rdren, 2003 ). After Polymerase Chain Reaction (PCR), amplified

ragments are generally separated by capillary electrophoresis. Ac-

ording to their size, amplified fragments are detected at a given

ime of the electrophoresis and are depicted as a peak in the elec-

rophoregram, whose area varies according to the intensity of the

ignal. Thus, a statistical treatment of the four signals of the indi-

idual i gives the observed genotypes ̂  g (i ) . To deal with allelic mul-

iplicity, theoretical ratios between peak intensities could be used

o determine the relative number of copies of each allele in poly-

loids ( Esselink et al., 2004 ). Unfortunately this strategy is very dif-

cult to apply, especially because signal intensity is also dependent

n amplification competition between alleles during PCR. There-

ore, in most cases electrophoregrams are generally interpreted as

resence or absence of alleles ( Dufresne et al., 2014 ). This is also

ur approach in this article but considering all possibilities of mul-

iplicity, for which we have seen in the previous sections how our

odel enables building and probabilizing of g ( i ) from 

̂ g (i ) . An ex-

mple of signal is shown in Fig. 9 . In addition we must not forget
hat a calibration of the equipment is needed, for practical pur-

oses. In concrete terms, the abscissa of the signals is made of dec-

mal values, which is clearly incompatible with what it is supposed

o highlight, namely some base pairs . Hence we take rounded val-

es, and an offset of ± 1 for each allele has to be considered. This

s the reason why we decided to switch to criterion (2.5) in the

eal data analysis. 

.2.1. Family trees and most likely genealogy 

Now we put aside n = 116 rose bushes, selected for the knowl-

dge of their ploidy and for the clarity of their signals, and we look

or potential genealogical links among them using the same allelic

robabilities as in the simulation study. All genealogies are super-

osed on Fig. 10 together with the genealogical graph on Fig. 11 for

he threshold probability πmin = 0 . 2 , a choice that will be justi-

ed in the sequel. Even if the graphical representation seems un-

xploitable, it illustrates the fact that many solutions are conceiv-

ble. More than one genealogy maximizes the likelihood, for some

inks have the same probability. An example of most likely geneal-

gy is given on the left of Fig. 12 , it contains 35 connected compo-

ents. Within the largest one, a chain of 5 generations is obtained

9 → 56 → 67 → 59 → 47). 
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Fig. 12. Genealogy T ∗ maximizing the log-likelihood of the rose bushes subpopulation found by the model (the dotted line highlights a chain of 5 generations), on the left. 

There are 35 connected components. Genealogy T 3 maximizing the log-likelihood of the rose bushes subpopulation enhanced with three individuals (117, 118 and 119) found 

by the model, on the right. There are 32 connected components. 
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4.2.2. Missing links 

On the right of Fig. 12 , one of the most likely genealogies is rep-

resented when n v = 3 new individuals suggested by the algorithm

of Section 3 are added (117, 118 and 119). Again, their role as miss-

ing links and their usefulness to connect separated branches of the

genealogy are clearly brought to light. Only 32 of them remain, due

to the fact that each missing link connects two components. In par-

ticular, we can notice the important intercession of 118, plugging

the two largest ones. 

4.2.3. Selected individuals 

To look for selected individuals, the estimated probabilities

(2.15) and expectations (2.17) are computed for all i ∈ P on the

basis of a subset of genealogies made of links whose likelihood

is greater than πmin = 0 . 2 . Indeed, since Card (G (P)) > 10 28 the

computation with no threshold is infeasible. It appears that with

this choice of threshold, Card (G (P)) is in the range of 10 6 which

is small enough to proceed to computations and large enough to

trust the statistical estimations. Fig. 13 contains the empirical ex-

pectations of all individuals together with an outlier threshold,

evaluated as it is explained in the beginning of this section. Each

individual having a higher mean number of offsprings is consid-

ered as a potential target for the retrospective selection by breed-

ers, there are 6 in this subpopulation. Amongst all individuals,

i = 88 has, on average, the largest number of offsprings in the

population. Fig. 14 shows the empirical distribution of N (88). Con-

cretely, 

 P (N(88) = 5) ≈ 0 . 770 , ̂ P (N(88) = 6) ≈ 0 . 230 and ̂ E [ N(88)] ≈ 5 . 230 . 

The last empirical distribution represented is the one of N (73), cho-

sen to illustrate the fact that an individual may have offspring in

some genealogies and no offspring in the others. Numerically, 

 P (N(73) = 0) ≈ 0 . 222 , ̂ P (N(73) = 1) ≈ 0 . 4 4 4 , 

 P (N(73) = 2) ≈ 0 . 278 , 

 P (N(73) = 3) ≈ 0 . 056 and 

̂ E [ N(73)] ≈ 1 . 167 . 
n terms of mean error between the estimated number of off-

prings ̂  E [ N(i )] and the number of offsprings n ∗( i ) in the maximum

ikelihood genealogy, 

1 

n 

∑ 

i ∈ P 

∣∣̂ E [ N(i )] − n 

∗(i ) 
∣∣ ≈ 1 . 21 × 10 

−1 and 

1 

n 

∑ 

i ∈ P 

(̂ E [ N(i )] − n 

∗(i ) 
)2 ≈ 7 . 30 × 10 

−2 . 

. Conclusion 

To conclude, we would like to draw the attention of the reader

o some weaknesses of the model, essentially relying on the al-

elic multiplicity. Indeed, our choice of considering each poten-

ial multiplicity weighted by a probability, instead of selecting a

articular one, may lead to contradictions in the genealogy. Sup-

ose for simplification that the most likely genealogy contains

he links {( p 1 , p 2 ) �→ q 1 } and {( q 1 , q 2 ) �→ e } where p 1 is a tetraploid

uch that g(p 1 ) = { a, a, a, a } , and p 2 is a diploid such that g(p 2 ) =
 b, b} . Both of them are homozygous, so there is no allelic uncer-

ainty derived from their observed genotypes, but ̂ g (q 1 ) = { a, b}
or the triploid q 1 can only match with {( p 1 , p 2 ) �→ q 1 } in case of

(q 1 ) = { a, a, b} . Suppose now that q 2 and e are tetraploids, hav-

ng g(q 2 ) = { c, c, c, c} and 

̂ g (e ) = { b, c} , respectively. Then, the link

( q 1 , q 2 ) �→ e } has a nonzero probability only for g(q 1 ) = { a, b, b} . In
ther words, the most likely genealogy treats q 1 as a link between

 p 1 , p 2 ) and e , but at the cost of incompatible allelic combinations.

his is a trail for future improvements of our model, in particu-

ar it seems worth considering an algorithm to detect contradic-

ions and to eliminate such trees from the set of genealogies. An-

ther weakness is the estimation of π21 , π12 , π31 , . . . , namely the

robabilities of allelic multiplicity. As we have seen in Section 4.2 ,

e lack information to properly evaluate them. An ambitious track

ould be the generalization of Chaumont et al. (2017) , in which

he authors establish the well-known Hardy-Weinberg equilibrium

o deal with heterozygoty in a diploid population. A challenging

tudy will be to characterize this equilibrium in our polyploid
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Fig. 13. Mean number of offsprings for each individual. The abscissa displays the individuals i ∈ P in chronological order and the ordinate represents the estimated expecta- 

tion of N ( i ). The dotted line is the outlier threshold extrapolated from the crosses (the moving window goes through 30 observations). For readability reasons, the abscissa 

is not completely filled. There are 6 probably favored individuals. 

Fig. 14. Empirical distribution of the random variable N (88), at the top. The abscissa represents the number k of offsprings, the ordinate is the estimated probability 

associated with the event { N(88) = k } . At the bottom, empirical distribution of the random variable N (73). 
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opulation – if it exists – and to determine its degrees of freedom.

his additional information will enable us to refine the probabil-

ties of multiplicity, considering that the population has reached

ts equilibrium. The crossbreeding patterns also have to be en-

anced with double reductions and preferential matches, both of

hem easily treated on a theoretical point of view (dealing with

ouble reductions as rare events of probability 0 < ε � 1 and pref-

rential matches as a lack of uniformity in the gamete production,

hen computing the probability of the crossbreeding), but difficult

o estimate. We have widely discussed the algorithm for missing

inks and its status of working base which calls for numerous en-

ancements. Finally, it is important to insist upon the fact that this

ork is mainly theoretical and that the application of our model

n a real population of rose bushes is only relevant in order to

how that coherent and interpretable results are obtained. Never-

heless, we cannot draw any conclusion from an empirical study

elying on m = 4 genes. In-depth experiments will be conducted

n more genes, and the comparison of any interesting result with

vailable historical sources will constitute strong arguments to
 a  
nderstand the breeders strategies over the past centuries, and

lso to try to complete the datasets with some lost or missing

nformation. 
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Table 1 

Full description of generations 1, 2 and 3 in the simulated population. 

Generation 1 

i x ( i ) ̂ g 1 (i ) ̂ g 2 (i ) ̂ g 3 (i ) ̂ g 4 (i ) Par. Pat. 

1 2 10–20 110 210–310 310–320 ∅ –

2 2 30–40 130–140 220–230 330 ∅ –

3 2 50 150–160 240–250 340 ∅ –

4 3 60 170–180–190 260–270 350–360–370 ∅ –

5 3 70–80 200 280 380–390–400 ∅ –

6 3 90–100–110 210–220 290–300–310 410 ∅ –

7 4 120–130–140 230–240–250–260 320–330 420–430–440 ∅ –

8 4 150–160–170–180 270–280 340 450 ∅ –

9 4 190–200 290–300 350–360–370 460–470–4 80–4 90 ∅ –

10 4 210–220 310–320 380–390–400 500–510–520 ∅ –

Generation 2 

i x ( i ) ̂ g 1 (i ) ̂ g 2 (i ) ̂ g 3 (i ) ̂ g 4 (i ) Par. Pat. 

11 2 10–40 110–130 210–220 320–330 (1,2) (P 1 ) 

12 2 40–50 140–150 220–250 330–340 (2,3) (P 1 ) 

13 2 20–40 110–130 210–220 310–330 (1,2) (P 1 ) 

14 3 50–60 160–170–180 250–270 340–350–370 (3,4) (P 2 ) 

15 3 40–100–110 140–210 220–290–310 330–410 (2,6) (P 2 ) 

16 2 20–80 110–200 210–280 320–400 (1,5) (P 2 ) 

17 3 50–210–220 150–320 240–380–400 340–520 (3,10) (P 3 ) 

18 4 130–160–180 240–250–270 320–330–340 430–450 (7,8) (P 6 ) 

Generation 3 

i x ( i ) ̂ g 1 (i ) ̂ g 2 (i ) ̂ g 3 (i ) ̂ g 4 (i ) Par. Pat. 

19 2 20–60 110–180 270–280 350–400 (4,16) (P 2 ) 

20 2 40 110–150 220 330 (11,12) (P 1 ) 

21 4 130–180–200 270–290–300 340–350–370 450–4 80–4 90 (9,18) (P 6 ) 

22 3 60–210 180–320 250–390–400 370–520 (10,14) (P 5 ) 

23 3 90–130–140 220–230–240 300–320 410–420–440 (6,7) (P 5 ) 

24 3 10–130–160 130–270 210–330–340 330–430–450 (11,18) (P 3 ) 

25 4 190–200 290–300 350–360–370 410–520 ∅ –

26 4 130–160–180 240–250–270 320–330–340 410 ∅ –

Table 2 

Full description of generations 4 and 5 in the simulated population. 

Generation 4 

i x ( i ) ̂ g 1 (i ) ̂ g 2 (i ) ̂ g 3 (i ) ̂ g 4 (i ) Par. Pat. 

27 4 80–200 20 0–270–30 0 280–340 380–400–4 80–4 90 (5,21) (P 5 ) 

28 4 40–10 0–20 0 210–290 220–310–350–360 330–410–470–490 (9,15) (P 5 ) 

29 3 10 0–20 0 140–290 310–350–370 410–460–490 (9,15) (P 5 ) 

30 4 130–200 270 330–340–350 450 (18,21) (P 6 ) 

31 2 20–210 180–320 280–380 400–520 (17,19) (P 2 ) 

32 2 40–60 110 220–270 330–350 (19,20) (P 1 ) 

33 4 10–180–200 130–270–380 210–340–370 430–450–520 ∅ –

34 4 20–90–200 160–270–330 370 520–530–550 ∅ –

35 4 130–180–200 270–290–300 340–350–370 410 (25,26) (P 6 ) 

Generation 5 

i x ( i ) ̂ g 1 (i ) ̂ g 2 (i ) ̂ g 3 (i ) ̂ g 4 (i ) Par. Pat. 

36 2 60–100 180–290 270–370 340–490 (14,29) (P 4 ) 

37 3 50–200 140–160–180 250–270–370 350–370–410 (14,29) (P 4 ) 

38 4 50–60–100 160–170–290 270–310–350 340–370–410–490 (14,29) (P 4 ) 

39 2 20–210 110–150 210–380 320–340 (1,17) (P 2 ) 

40 3 40–200 130–290 210–310–370 330–410–460 (11,29) (P 2 ) 

41 2 20–110 150–320 260 410–520 ∅ –

42 3 230 170–390–420 240–340 380–390 ∅ –

43 4 70–90–100 210–220–270 310–330–340–400 490 ∅ –
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Appendix 

This Appendix is devoted to the precise description of the sim-

ulated population appearing in Section 4.1 . All useful informa-
ion are given in Tables 1 , 2 and 3 , displaying the composition

f the successive generations. For each individual, the columns in-

icate an identifier i , the ploidy x ( i ), the observed genotypes ̂ g (i )

n the four signals, the couple of parents and the reproduction

attern. 
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Table 3 

Full description of generations 6, 7 and 8 in the simulated population. 

Generation 6 

i x ( i ) ̂ g 1 (i ) ̂ g 2 (i ) ̂ g 3 (i ) ̂ g 4 (i ) Par. Pat. 

44 3 110–230 170–320–390 240–260–340 390–520 (41,42) (P 2 ) 

45 2 110–230 320–420 260–340 390–520 (41,42) (P 2 ) 

46 4 130–150–160 270 330–340 450 (8,18) (P 6 ) 

47 2 90 220 310–320 410–510 ∅ –

48 3 50–210 180–320 250–400 410–520 (22,37) (P 4 ) 

49 2 240 320 410 510–520 ∅ –

50 4 10 0–20 0 270 310–330–370 410–490–520 ∅ –

Generation 7 

i x ( i ) ̂ g 1 (i ) ̂ g 2 (i ) ̂ g 3 (i ) ̂ g 4 (i ) Par. Pat. 

51 3 200–240 270–320 310–370–410 410–490–520 (49,50) (P 3 ) 

52 4 230 170–390–420 240–340 390 (42,44) (P 4 ) 

53 3 130 230–240 320 410–420–440 (7,23) (P 5 ) 

Generation 8 

i x ( i ) ̂ g 1 (i ) ̂ g 2 (i ) ̂ g 3 (i ) ̂ g 4 (i ) Par. Pat. 

54 4 230 170–390–420 240–340 390 (42,52) (P 5 ) 
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