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ON THE COST OF BAYESIAN POSTERIOR MEAN STRATEGY FOR
LOG-CONCAVE MODELS

SÉBASTIEN GADAT, FABIEN PANLOUP AND CLÉMENT PELLEGRINI

Abstract. In this paper, we investigate the problem of computing Bayesian estimators
using Langevin Monte-Carlo type approximation. The novelty of this paper is to consider
together the statistical and numerical counterparts (in a general log-concave setting). More
precisely, we address the following question: given n observations in Rq distributed under an
unknown probability Pθ‹ , θ‹ P Rd, what is the optimal numerical strategy and its cost for
the approximation of θ‹ with the Bayesian posterior mean?
To answer this question, we establish some quantitative statistical bounds related to the
underlying Poincaré constant of the model and establish new results about the numerical
approximation of Gibbs measures by Cesaro averages of Euler schemes of (over-damped)
Langevin diffusions. These last results include in particular some quantitative controls in
the weakly convex case based on new bounds on the solution of the related Poisson equation
of the diffusion.

1. Introduction

1.1. Log-concave statistical models . In this paper, we consider a statistical model pPθqθPRd
parametrized by a parameter θ P Rd. We assume that each distribution Pθ defines a proba-
bility measure on pRq,BpRqqq and that all the distributions Pθ are absolutely continuous with
respect to the Lebesgue measure λq, we denote by πθ the corresponding density:

@ξ P Rq πθpξq :“
dPθ
dλq

pξq.

We assume that we observe n i.i.d. realizations pξ1, . . . , ξnq, sampled according to Pθ‹ where θ‹
is an unknown parameter. We are then interested in Bayesian statistical procedures designed
to recover θ‹. In all the paper, we restrict our study to the specific class of log-concave models
where the distributions are described by:

πθpξq :“ e´Upξ,θq, (1)

where pξ, θq ÞÝÑ Upξ, θq “ ´ logpπθpξqq is assumed to be a convex function. Note that
implicitly, the normalizing constant Zθ :“

ş

Rq e
´Upξ,θqdξ is assumed to be equal to 1, which is

not restrictive up to a modification of U .
Besides the Gaussian toy model that trivially falls into our framework, log-concave statistical

models have a longstanding history in a wide range of applied mathematics and it seems
almost impossible to enumerate exhaustively the range of possible applications. For instance,
the log-concave setting appears with exponential families thanks to the Pitman-Koopman-
Darmois Theorem, in extreme value theory, tests (chi-square distributions), Bayesian statistics
among others. Log-concave distributions also play a central role in probability and functional
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analysis ([BBCG08, Bob99]), or geometry (see e.g. [KLS95]). The log-concave property
is commonly used in economics (for example the density of customer’s utility parameters
is generally assumed to satisfy this property [BB05]), in game theory (see e.g. [CN91a] and
[LT88]), in political science and social choice (see e.g. [CN91b]) or in econometrics (for example
through the Roy model, see e.g. [HH90]).

An obvious and important example comes from all distributions that are built with a
multivariate convex function U : RdˆRq ÝÑ R and where the first d coordinates are considered
as the hidden parameter θ while the q other ones are the observations. Starting from a convex
function U : Rq ÝÑ Rq, translation models pξ, θq ÞÝÑ e´Upξ´θq also generate typical examples
of log-concave models in pξ, θq. Many other distributions satisfy the log-concave property:
Gumbel and Weibull distributions with a shape parameter larger than 1. In particular, this
includes a large class of parametric probability distributions such as Gaussian or Laplace
models, logistic regression models, Subbotin distributions, Gamma or Wishart distributions,
Beta and uniform distributions on real intervals among others. We refer to [SW14] for a
detailed survey on properties of log-concave distributions, to [Wal09] for a list of modeling
and application issues and to [KS16] for non-parametric density estimation procedures of
log-concave distributions.

1.2. Bayesian estimation of θ‹. We briefly sketch Bayesian strategies for estimating θ‹.
‚ Bayesian paradigm. Considering a prior distribution Π0 on θ, we assume that Π0 is
absolutely continuous with respect to the Lebesgue measure λd on Rd. Without any possible
confusion with the familiy of densities pπθqθPRd , the associated density of the prior is denoted
by π0:

@θ P Rd π0pθq :“
dΠ0

dλd
pθq.

We further assume that π0 is also log-concave and we write π0:

@θ P Rd π0pθq :“ e´V0pθq, (2)

where V0 encodes the prior knowledge on θ. We emphasize that this last assumption is not
restrictive since the prior distribution is chosen by the user. We denote by πn the density of
the posterior distribution (that depends on the observations ξn :“ pξ1, . . . , ξnq) given by:

πnpθq9π0pθq
n
ź

k“1

πθpξkq.

The posterior distribution is a data-driven probability distribution that may be written as:

@θ P Rd πnpθq “
e´Wnpξn,θq

Znpξnq
π0pθq where Wnpξ

n, θq “
n
ÿ

i“1

Upξi, θq. (3)

The quantity Znpξnq corresponds to the normalizing constant and depends as well on ξn:

Znpξ
nq “

ż

Rd
π0pθqe

´Wnpξn,θqdθ.

It is well known that the posterior distribution enjoys consistency properties (see e.g. [Sch65,
IH81]): under mild assumptions on the prior distribution and on the statistical model, the
posterior distribution concentrates its mass around θ P Rd whose distribution is close to Pθ‹ .
‚ Bayesian contraction rate With additional metric and identifiability assumptions, some
stronger results may be obtained in general parametric or non-parametric models. We refer
to the seminal contribution of [GGvdV00] and the references therein, to the work of [CvdV12]
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for an extension to less standard situations of high-dimensional models and to [vdVvZ08] for
infinite dimensional models.

The posterior distribution may be used to define Bayesian estimators, in particular, we shall
introduce the popular posterior mean estimator of θ‹ defined by:

rθn “

ż

Rd
θπnpθqdθ. (4)

This estimator is usually consistent and a statistical issue for statisticians is to establish rates
of convergence towards θ‹. In our paper, such rates of convergence will be investigated through
a Lp-approach, by providing a sequence εn ÝÑ 0 as n ÝÑ `8 such that prθnqně1 satisfies:

Eθ‹
´

|rθn ´ θ
‹|p

¯

ď εpn, (5)

for a given p ą 1. Nevertheless, when a such bound is obtained, the story is not over. Actually,
the theoretical posterior mean given by Equation (4) being generally not explicit, the practical
use of the above statistical bounds certainly requires to provide computable algorithms that
may approximate rθn. In particular, it is legitimate to look for a tractable estimator pθn that
approaches an εn-neighborhood of rθn with as less operations as possible.

1.3. Over-damped Langevin Monte Carlo (LMC) diffusion and continuous-time
approximation. To approximate rθn, it is commonly used to write πn as a Gibbs field:

πnpθq9 expp´ĂWnpξ
n, θqq with ĂWnpθq “

n
ÿ

i“1

Upξi, θq ` log

ˆ

1

π0pθq

˙

. (6)

Under some mild assumptions on ĂWn, it is well known that a such probability measure is the
unique invariant distribution of the (over-damped) Langevin diffusion defined by:

dX
pnq
t “ ´∇ĂWnpX

pnq
t qdt`

?
2dBt, (7)

where pBtq is a d-dimensional standard Brownian motion.
Thus, the probability πn can be approximated using the long-time convergence of pXpnqt qtě0

towards its invariant distribution πn. One can mainly distinguish two types of convergences
towards πn: the convergence of the distribution of Xpnqt as tÑ `8 or the a.s. convergence of
the occupation measure of pXpnqt qtě0. Here, we build our algorithm with the second type of
convergence, which requires only one path of the diffusion.
‚ Cesaro average We are thus led to consider the occupation measure applied to the

identity function denoted by Id. In this case, this is nothing but the Cesaro average related
to the diffusion:

@n P N‹ @t ą 0 pθn,t :“
1

t

ż t

0
IdpX

pnq
s qds “

1

t

ż t

0
Xpnqs ds. (8)

Under mild conditions, ppθn,tqtě0 converges a.s. towards rθn. One objective is thus to sharply
estimate the related error in order to assess the complexity for the approximation of θ‹ (with
the help of (5)).
‚ Shifted Cesaro average We will also introduce a second approximation, which is a shifted
Cesaro average that omits the very first times involved in the simulation of the trajectory,
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before t0. This threshold t0 will be chosen carefully to optimize our approximation procedure:

@n P N‹ @t ą t0 ą 0 pθn,t0,t :“
1

t´ t0

ż t

t0

Xpnqs ds. (9)

1.4. Langevin Monte Carlo discretization and practical estimator. In (8) and (9),
Cesaro averages are based on the “true” diffusion but to obtain a tractable algorithm, we
need to introduce Cesaro averages of some discretization schemes of (8) and (9). For this
purpose, we consider a step sequence pγkqkě1 of positive numbers such that

ř

kě1 γk “ `8.
Throughout the paper, this sequence will be constant or decreasing (typically, γk “ γk´r with
r P r0, 1s). Denoting by t0 “ 0 and tk “

řk
`“1 γ`, we introduce pX̄tqtě0 the stepwise constant

explicit Euler-Maruyama scheme related to Xpnq (omitting the index n for simplicity):

X̄tk`1
:“ X̄tk ´ γk`1∇ĂWnpX̄tkq `

?
2ζk`1, (10)

where for all k ě 1, ζk “ Btk ´ Btk´1
and pBtqtě0 is a standard d-dimensional Brownian

motion. It is possible to define a continuous affine interpolation of (10) but from a practical
point of view, it will be more comfortable to consider some initialization and ending times in
the discrete grid ptkqkě0. For s ą 0, we define s the largest grid point in ptkqkě0 below s:

s :“ supttk : tk ď su. (11)

Then, for any time-shift tk0 ą 0 and any final horizon tN ą 0, we denote by µ̄tk0 ,tN , the
occupation measure:

µ̄tk0 ,tN “
1

tN ´ tk0

ż tN

tk0

δX̄sds “
1

tN ´ tk0

N´1
ÿ

i“k0

γi`1δX̄ti
.

Then, the approximation of pθn,t0,t with a step-size sequence pγkqkě0 is given by:

pθγn,tk0 ,tN
:“

ż

Rd
xµ̄tk0 ,tN pdxq “

řN´1
j“k0

γj`1X̄tj
řN´1
j“k0

γj`1

, (12)

which corresponds to the weighted Cesaro average of the discretized trajectory (10) from
iteration k0 to iteration N . This Cesaro construction first appeared in [Tal90] where some
convergence properties of the empirical measure of the Euler scheme with constant step size
were investigated. In a series of more recent papers (among others, see [LP02, LP03, PP12]
or [PP18] for a multilevel extension), the decreasing-step setting has been deeply studied.
Compared with these papers, the novelty of our work is that, we propose some non-asymptotic
quantitative bounds (see Section 1.5 for details about the corresponding results). Note that for
ease of presentation, we prefered to mainly consider the (less technical) constant step setting.

1.5. Contributions and plan of the paper. Before stating the main results, we provide
a brief description of our main contributions. As mentioned before, our aim is to tackle the
Bayesian estimation problem with a quantitative computational approach taking into account:

‚ The Bayesian consistency problem and the (as sharp as possible) control of the dis-
tance between the Bayesian posterior mean rθn and θ‹.

‚ The numerical question related to the approximation of rθn by a computable algorithm.
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In short, for some given n and d, we first exhibit an εn that upper-bounds the (Lp-type)
error between rθn and θ‹. Then, for this εn, we aim at tuning the procedure (12) in order to
obtain an εn-approximation1 of rθn with a minimal computational cost (in terms of n and d).
This cost N (number of iterations of the Euler scheme) will be explicited as a Oidpnadbq (for
some positive a and b) where for some sequences punq and pvnq,

un “ Oidpvnq ðñ |un| Àid |vn| ðñ D C independent of d such that @n, |un| ď C|vn|.

Our main contribution states that Bayesian learning can be optimally performed in Oidpnd_
n2d´1q for strongly convex situations and remain polynomial in weakly convex cases.

Related to these objectives, we state our main results in Section 2 starting with Theorem
2.3 on the Bayesian consistency. We first provide a new bound of type (5) expressed in terms
of the Poincaré constant of the model (which is assumed to satisfy a uniformity condition).
Compared with the literature on this problem (see e.g. [MHW`19]), this result is written
under general assumptions on the family of log-concave models and does not require specific
assumptions related to a dynamical system.

Then, we turn out to the second objective by stating a series of results on the approximation
of rθn. Inspired by [CCG12], Theorem 2.4 (resp. Theorem 2.5) bounds the L2-error between
the Cesaro (resp. shifted) average of the LMC diffusion and rθn. These results, written in a
general log-concave setting and related to the “true” diffusion, which can not be simulated in
general, represent a benchmark. All the more it gives some indications on the right rate of
convergence and on the role of the time shift (say also Warm start).

Our main results about Cesaro-type LMC and optimal tuning of the parameters (in terms
of n and d) are Theorems 2.8 and 2.9. In the first one, we investigate the strongly convex case
where it is possible to control the distance between the “true” and discretized diffusions. Note
that the strategy of proof of Theorem 2.8 is similar to [DM19]2, where the authors estimate
the invariant distribution through the distribution of the Euler scheme (instead of a Cesaro
average in our setting).
In the weakly-convex case, our argument is based on a “Poisson approach”, i.e. on the inversion
of the infinitesimal generator of the diffusion. Even though classical in the literature for the
study of Cesaro averages (see e.g. [LP02, HMP20]), the difficulty here is to provide some
quantitative controls on the solution of the Poisson equation. Here, with the help of a sharp
study of the tangent process of the diffusion, we obtain some explicit bounds on the distance
between the discretized Cesaro average and the posterior mean (see in particular Theorem
6.2). These bounds lead to Theorem 2.9, which provides our optimal tuning in terms of n and
d in the weakly convex setting. Section 2 ends with an extended discussion and comparison
with the historical and state of the art contributions on Bayesian learning theory (Section
2.5).

For an improved readability of the work, numerous proofs and technical results are deferred
to the supplementary file [GPP20].

2. Main results and discussion

We provide here some notations and assumptions all along the statement of our results.

1By ε-approximation, we mean an approximation of the target with an Lp-error of the order Opεq.
2A more detailed comparison with the (huge) literature on this topic is given in Section 2.5.4.
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2.1. Functional inequality and Assumption pPIUq. For any measure µ and f P L1pµq,
µpfq refers to the mean value of f , and when f P L2pµq, V arµpfq is the variance of f :

µpfq :“

ż

Rq
fpξqdµpξq and V arµpfq :“

ż

Rq
rfpξq ´ µpfqs2dµpξq.

A crucial property of log-concave measures is that they satisfy a Poincaré inequality. This
will be used extensively in the rest of the paper. We refer to [Led01, BGL14] for a complete
presentation and some applications on concentration inequalities and Markov processes.

Definition 2.1 (Poincaré inequality). µ satisfies a Poincaré inequality with CP pµq if

@f P L2pµq V arµpfq ď CP pµqµp|∇f |2q.

We remind an important result obtained in [Bob99] (see also [BBCG08]) that establishes
the existence of a Poincaré inequality for every log-concave probability distribution.

Theorem 2.2 ([Bob99, KLS95]). Every log-concave measure with density µ satisfies a Poincaré
inequality: a universal constant K exists such that:

CP pµq ď 4K2µp}Id ´ µpIdq}
2q.

Since pξ, θq ÞÝÑ Upξ, θq is a convex function, Theorem 2.2 implies that for all θ P Rd, Pθ
satisfies a Poincaré inequality of constant CP pPθq. We introduce an assumption that stands
for a uniform bound of the collection of Poincaré constants CP pPθq.

Assumption 2.1 (Uniform Poincaré Inequality pPIUq). A constant CUP exists such that

@θ P Rd CP pPθq ď CUP .

We emphasize that according to Theorem 2.2, a uniform bound on the variance of each
distribution Pθ over θ P Rd entails pPIUq.

2.2. Bayesian consistency.

2.2.1. Notations, Assumptions pALq and pIW1pcqq. For any integrable random variable ψpΞq
in L1pπθq, EθrψpΞqs will refer to the expectation of the random variable ψpΞq when Ξ is
sampled according to Pθ:

EθrψpΞqs “
ż

Rq
ψpξqe´Upξ,θqλqpdξq.

In our work, two sources of randomness are considered. The first one is derived from the
observations ξn: Pθ and Eθ refer to the probability and expectation on the unknown distri-
bution of the sampling process. The second source of randomness is related to the posterior
distribution πn over Rd: for any Borelian B of Rd, πnpBq is the probability of B when θ is
sampled according to πn, conditionnally to Ξ. Hence, Eπn is the expectation when θ „ πn,
conditionnally to ξn.

We introduce some mild assumptions necessary to obtain some consistency rates of rθn.
First, we handle smooth functions pξ, θq ÞÝÑ Upξ, θq and assume that:

Assumption 2.2 (Assumption pALq). U satisfies the C1
L hypothesis: i.e. the partial gradient

of U with respect to θ is a L-Lipschitz function:

@ξ P Rq @θ1, θ2 P Rd : |∇θUpξ, θ1q ´∇θUpξ, θ2q| ď L|θ1 ´ θ2|.
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To make the estimation problem feasible, we need to manipulate some statistically iden-
tifiable models. If statistical identifiability is a free result for any L1 location model when
Upξ, θq “ Upξ ´ θq, this is no longer the case in general statistical models, even log-concave
ones. We therefore introduce an identifiability assumption, which will be important below for
our theoretical results.

Assumption 2.3 (Assumption pIW1pcqq - Wasserstein identifiability). A strictly increasing
map c : R` ÝÑ R` and a 1-Lipschitz function Ψ exist such that cp0q “ 0 and :

@θ1, θ2 P Rd, |πθ1pΨq ´ πθ2pΨq| ě cp|θ1 ´ θ2|q.

Furthermore, we shall assume that a pair pb1, b2q P tR‹`u2 and αc>0 exists such that:

@∆ ě 0 cp∆q ě b1∆αc1∆ď1 ` b2rlogp∆q ` 1s1∆ě1. (13)

Assumption pIW1pcqq is a quantitative identifiability condition. It implies in particular that

W1pPθ1 ,Pθ2q ě cp|θ1 ´ θ2|q,

whereW1pPθ1 ,Pθ2q refers to the 1-Wasserstein distance between Pθ1 and Pθ2 . The constants b1
and b2 are not fundamental in our forthcoming analysis but the parameter αc plays a central
role: it asserts how the distributions πθ1`δ moves from πθ1 for small values of δ. We refer to
Section 2.5 for an extended discussion on this assumption.

2.2.2. Bayesian consistency . We obtain the next result, which is still valid besides the log-
concave settings. We have chosen to keep this setting for the sake of readability, even though
pPIUq is sufficient here to guarantee the result.

Theorem 2.3. If π0 “ e´V0 is a C1pRd,Rq log-concave prior with V0 P C1
1 , if pPIUq, pALq

and pIW1pcqq hold, then

@p ą 1
´

Eθ‹
´ˇ

ˇ

ˇ

rθn ´ θ
‹
ˇ

ˇ

ˇ

p¯¯1{p
Àid KpUq

ˆ

d
logpnq

n

˙
1

2αc

,

with KpUq “
´
b

CUP L
¯

1
αc and CUP is the Poincaré constant given in pPIUq (Assumption 2.1).

This result states an upper bound on the Lp loss between the posterior mean rθn and θ‹:

ε2
n :“

`

CUP L
2
˘1{αc Oid

ˆ

d log n

n

˙1{αc

, (14)

and in particular, when p “ 2, we recover the standard mean square error rate. If the
separation provided by pIW1pcqq is sharp, i.e. when αc “ 1, the L2 loss is proportional to

b

d
n

(up to a log-term), which is the optimal loss in many statistical models. Our upper bound is
deteriorated when αc increases, i.e. when the separation of the distributions Pθ near Pθ‹ is
“flat”, i.e. when the Wasserstein distance W1pPθ,Pθ‹q „ b1}θ ´ θ

‹}1`ε for ε ą 0 near θ‹.

2.3. Continuous-time Cesaro strategies .
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2.3.1. Speed of approximation. For a fixed sample ξn “ pξ1, . . . , ξnq, the function ĂWn in-
troduced in (6) is a convex function, so that Theorem 2.2 entails a Poincaré inequality for
the posterior distribution πn. Explicitely, πn satisfies a Poincaré inequality with a (sample-
dependent) constant CP pπnq whereas the spectral gap λ1,n is related to CP pπnq through:

CP pπnq :“
1

λ1,n
.

In the next result, we connect the approximation of rθn by a continuous-time LMC diffusion
with the (sample-dependent) moments of πn:

Vn,2 :“ Eπn
´

|θ ´ rθn|
2
¯

and Vn,4 :“ Eπn
´

|θ ´ rθn|
4
¯

. (15)

Again, the next result is still valid as soon as πn enjoys a Poincaré inequality with con-
stant CP pπnq. The log-concave setting is only a convenient way to guarantee this functional
inequality.

Theorem 2.4 (Approximation of the posterior mean: Cesaro average with ppθn,tqtą0). For
any µ such that Xpnq0 „ µ, for any horizon time t ą 0 and any α ą 0:

Eµ
´

|pθn,t ´ rθn|
2
¯

ď
a

Vn,4

«

2
?

2
α2 logptq2

λ2
1,nt

2

a

1` Jµ,0 `
4

tλ1,n
`
a

Jµ,0t
´α

ff

,

where Jµ,0 stands for the initial L2pπnq-distance between µπ´1
n and 1: Jµ,0 “ }µπ´1

n ´1}2L2pπnq
.

Remark 1. Theorem 2.4 shows that the efficiency of pθn,t highly depends on Vn,4, λ1,n and
Jµ,0. If Vn,4 and 1

λ21,n
depends on the concentration of the posterior distribution πn and

will be shown to be small, we also observe that the distance between the initialization of
the Langevin diffusion and the target measure πn may crucially harm the error bound. In
particular, we will prove that the typical warm start (or shift) strategies shall produce Jµ,0 of
the order Oped log dq for our log-concave model, which leads to very poor approximation rate
(in terms of the dimension d) in Theorem 2.4. In particular, the time t needed to “kill” the
poor initialization of the process with µ will be exponential with the dimension if we consider
the very first part of the trajectory pθpnqs qsďt0 since we need to upper bound

a

Jµ,0t
´2.

We now state that pθn,t0,t introduced in (9) significantly improves the approximation of rθn.

Theorem 2.5 (Approximation of the posterior mean: Shifted Cesaro average with pθn,t0,t).
For any µ such that Xpnq0 „ µ:

@t ą 0 Eµ
´

|pθn,t0,t ´
rθn|

2
¯

ď
a

Vn,4
„

4

pt´ t0qλ1,n
`
a

Jµ,0e
´λ1,nt0



.

2.3.2. ε´computational cost. Theorems 2.4 and 2.5 are useful to assess the speed of approx-
imation of rθn with ppθn,tqtě0. In particular, this speed highly depends on several sample
dependent random variables related to πn: Vn,4, λ1,n and Jµ,0. We denote by Σµ,n and Σ1µ,n:

Σµ,n “
?

2p1` Jµ,0q
1{4

V1{4
n,4

λ1,n
and Σ1µ,n “ 4

a

Jµ,0Vn,4
λ1,n

. (16)

A straightforward application of Theorem 2.4 and Theorem 2.5 yields:
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Corollary 2.6. Assume that pIW1pcqq, pALq and pPIUq hold, then we have:

iq For any ε ą 0 and α ą 0, we have:

t ě t‹ε,n :“
αΣµ,n

ε
log2

ˆ

αΣµ,n

ε

˙

_
Σ1µ,n
ε2

_

˜

a

Vn,4
ε2

¸1{α

ùñ Eµ
´

|pθn,t ´ rθn|
2
¯

ď 3ε2.

iiq For any ε ą 0, we have:

t0 ě
1

λ1,n
log

˜

a

Vn,4Jµ,0
ε2

¸

looooooooooooomooooooooooooon

:“t0,‹ε,n

and t´ t0 ě

a

Vn,4
λ1,nε2
loomoon

:“t∆tu‹ε,n

ùñ Eµ
´

|pθn,t0,t ´
rθn|

2
¯

ď 2ε2.

The effect of Jµ,0 on the computational time of the Langevin diffusion is therefore crucial.
It is well known that the initialization of the Langevin diffusion must be tuned carefully. We
refer to Section 4.1 of [Dal17] for an extended discussion, with a chi-square distance χ2pµ, πnq

(instead of a L2 distance in our case). We introduce the (sample dependent) minimizer of ĂWn:

θ
ĂWn “ arg min

θPRd
ĂWnpθq. (17)

and the following assumption:

Assumption 2.4 (Behaviour of Upξ, .q - pCβq). A pair pβ, cβq P r1, 2s ˆR‹` exists such that:

@ξ lim sup
|θ|ÝÑ`8

Upξ, θq|θ|´β ě cβ.

Using the value εn introduced in Theorem 2.3 (see Equation (14)), we obtain the following
corollary, whose proof is deferred to Section 3 of the supplementary materials [GPP20]. In
particular the technical choice of the initial measure is explained in depth.

Corollary 2.7. Assume that pIW1pcqq, pALq and pPIUq hold. If µ is the uniform distribution
over BpθĂWn , aq with a ă n´1{2 and pCβq holds, we have:

Eθ‹rt‹εn,ns “ Oid
´

erd logpdq`logpnqs
¯

and

Eθ‹rt0,‹εn,ns “ Oid
`

ε2
nrd log d` log ns

˘

and Eθ‹rt∆tu‹εn,ns “ Oid
`

ε2
n

˘

.

In this general setting, the shifted strategy is far better than the Cesaro averaging over
a whole trajectory. Therefore, in this continuous-time setting, the essential cost of Bayesian
learning is brought by t0,‹εn,n. Note that in some less general settings (including strongly convex
diffusions), Jµ,0 is significantly smaller. It implies that the above theoretical result is not
explicitly used in the discretization part below.

At this stage, this result does not really quantify the cost of an algorithm. We will see in the
next paragraph that the essential cost of the LMC is inherited from the discretization.
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2.4. Discretization cost. We now assess the efficiency of the whole Bayesian approach when
using pθγn,tk0 ,tN

introduced in (12). We present our statements into two separate paragraphs.
These results highly depend on two general results on the discretization of LMC, that are
deferred to Section 5 and Section 6. We still use ε2

n defined in (14) in this paragraph. At this
stage, we introduce the expectation Er.s that is computed with respect to the sampling of ξn
and the discrete LMC procedure.

2.4.1. Strongly convex case. This paragraph concerns the strongly convex and L-smooth case.

Assumption 2.5 (Assumption pSCρq). We assume that for any ξ P Rq, Upξ, .q is ρ-strongly
convex: i.e., for any ξ P Rq:

@z P Rd @θ P Rd : tz∇2
θUpξ, θqz ě ρ|z|2.

The next theorem gives a quantitative setup to attain an ε2
n accuracy for a discrete LMC

procedure with a constant step-size γ.

Theorem 2.8. Assume that pIW1pcqq, pALq and pPIUq. Let εn be defined by (14) and suppose
that pSCρq holds. Then, Er|pθ

γ
n,tk0 ,tN

´ θ‹|2s ď ε2
n for the following tuning of the parameters:

γ “
ρ

L2
Oid

ˆ

ε2
n

nd

˙

, k0 “

ˆ

L

ρ

˙2

Oid
`

ε´2
n d2 logpdq

˘

, and N0 :“ N´k0 “

ˆ

L

ρ

˙2

Oid
`

dε´4
n

˘

.

In particular, the number of iterations should be of the order
ˆ

L

ρ

˙2
´

Oid
´

d1´ 2
αc n

2
αc

¯

_Oid
´

d2´ 1
αc logpdqn

1
αc

¯¯

.

Remark 2. This result deserves several comments.
‚ This theorem indicates that the step size should be chosen as γ9 ε´2

n
nd , which becomes

smaller when n increases. This is due to the sharper statistical accuracy we can expect
with the posterior mean when we have a large amount of observations.

‚ The computational cost is translated by k0 (the size of the shift before we record the
computations of the Cesaro average) and N0 (the length of the Cesaro window). The
main part of this computational cost is brought either by k0 or N0 and this balance
depends on d, n and αc. Straightforward computations (if we omit the log terms) show
that:

k0 ď N0 ðñ d2 logpdqε´2
n ď dε´4

n

ðñ d logpdq ď ε´2
n

ðñ n ě dαc`1.

‚ For “easy” estimation problem like location statistical models where αc “ 1, we obtain
an overall number of iterations of the order:

n2

d
_ nd (up to log-terms).

‚ Another extreme case corresponds to αc “ 2 that translates an important flatness of
the application θ ÞÝÑ Pθ around θ‹ and a much more harder estimation problem. In
that case, the number of iterations should be of the order:

n_ d3{2?n (up to log-terms).
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‚ Finally, we observe that with pSCρq, besides the obvious curse of dimensionality for
large d concerning the statistical accuracy of pθn, this phenomenon doesn’t appear when
looking at the computational cost, which is polynomial in terms of n and d

2.4.2. Weakly convex case. We still assume pALq and introduce for any convex function W :

λ̄∇2W pxq :“ suptSpp∇2W pxqqu and λ∇2W pxq “ inftSpp∇2W pxqqu. (18)

For some c1 ą 0, c2 ą 0 and r P r0, 1s, we also introduce the two following assumptions:

Assumption 2.6 (Assumption pHc1
q). lim|x|Ñ`8 |∇W pxq|2 “ `8 and |∇W |2 ď c1W .

Assumption 2.7 (Assumption pHc2,r
q). x ÞÝÑ λ∇2W pxq is positive and

@x P Rd λ∇2W pxq ě c´1
2 W pxq´r.

The parameter r can be viewed as a parametrization of the lack of curvature, varying from 0
(in the strongly convex case) to 1 in the “almost” Laplace case. In particular, the complexity
of the procedure will increase with r.
For any positive c and any γ0 ą 0, let Cc,γ0 be defined by:

Cc,γ0 :“ tx P Rd, |∇W pxq|2 ´ cdλ̄locpγ0, xq ď 1u where λ̄locpγ0, xq :“ sup
|u´x|ăγ0|∇W pxq|`2

λ̄∇2W puq.

(19)

We observe that pHc1
q entails the compactness of Cc,γ0 . For a positive λ, we set:

βpλ, c, γ0q :“ sup
xPCc,γ0

eλW pxqp1` cdLq and bd “ logpβp1{8, 5, γ0qq _ 1. (20)

Finally, when W is C3, we introduce the following notation:

}D3W }8 :“ sup
i

sup
xPRd

}∇3
i,.,.W pxq}F , (21)

where ∇3
i,.,. refers to the squared matrix built with the third order partial derivatives of W

when the variable i is kept fixed.
In the next result, we will have to use the above assumptions for the family of functions

(Uξ :“ Upξ, .qqξPRq . We will write b
pξq
d instead of bd in order to recall that bd depends on Uξ.

Theorem 2.9. Assume pIW1pcqq, pALq and pPIUq. Let εn be defined by (14). Suppose that
for any ξ P Rq, Upξ, .q satisfies pHc1

q and pHc2,r
q, with c1, c2 and r P r0, 1s independent of ξ,

and that supξPRd b
pξq
d Àid d. Then, E

”

|pθγn,0,tN ´ θ
‹|2

ı

Àid ε
2
n for the following tuning of the

parameters:
iq For a given arbitrary small e,

γ “
εn

Lnd1`r` e
2

^
ε2
n

L2d2`2r`e
. and N “

L2d2` 5
2
r`2e

ε2
n

max

˜

n1`r, nrd1`rε´1
n ,

d1` 3
2
r

pnεnq2

¸

.

iiq For a given arbitrary small e, γ “ εn

´

1

Lnd1`r`
e
2
^ 1

d
5
2`2r`enr`

e
2

¯

and

N “ max

˜

Ln1`rd2` 5
2
r`e

ε3
n

,
n2r` e

2d
7
2
p1`rq` 3

2
e

ε3
n

,
nr´2d

7
2
`4r`2e

ε3
n

,
L2d2`2r`e

ε2
n

¸

,
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under the additional assumption supξPRq }D
3Upξ, .q}8 “ Oidp1q.

Note that in the above result, the constant behind “Àid” depends on e (this explains that we
do not state the result for e “ 0). In iiq, we assume that the third order derivatives are upper
bounded uniformly and independently from d. Instead of this assumption, we could have
equivalently written that the constant behind the “Oid” in the choice of γ and N depends
on supξPRq }D

3Upξ, .q}8 (Note that this dependency is made precise in Theorem 6.2 which
is the cornerstone of the above theorem). The next result is a straightforward consequence
of Theorem 2.9 in the standard situation where αc “ 1 (i.e. with a sharp separation of
distributions around θ‹) and when, once again, bd Àid d (on this point, see Remark 4).

Corollary 2.10. Under the assumptions of Theorem 2.9 with αc “ 1, the mean-squared error
satisfies: Er|pθγn,0,tN ´ θ

‹|2s Àid
d logpnq

n when, “up to3 the parameters L, e and log n,”

iq γ “ n´
3
2d´pr`

1
2
q^n´1d´p1`2rq and N “ nd1`3r max

´

n1` r
2d´

1
2 , n

1
2
`rd

1`r
2 , drn´1

¯

.

iiq If γ “ n´
3
2d´p

1
2
`rq ^ n´p

1
2
`rqd´2p1`rq and

N “ max
´

n
3
2
`2rd2` 7

2
r, n

5
2
`rd

1
2
` 5

2
r
¯

,

under the additional assumption supξPRq }D
3Upξ, .q}8 “ Oidp1q.

Remark 3. The main tool for this result is Theorem 6.2, where we obtain for a given weakly
convex potential W and its associated Gibbs distribution π “ e´W , some L2-bounds for the
distance between the Cesaro average of the Euler scheme between πpIdq. As mentioned in
the introduction, this result relies on some bounds on the solution of the Poisson equation,
derived from a sharp study of the tangent process of the diffusion.

Remark 4. Let us comment the assumptions with W pxq “ p1 ` |x|2qp with p P p1{2, 1s
(especially bd Àid d which may appear mysterious). First, we shall verify that

∇W pxq “ 2pxW pxqpp´1q{p and p∇2W pxqqij “ 4ppp´1qxixjW pxq
pp´2q{p`2pδijW pxq

pp´1q{p.

Thus, pHc1
q holds with c1 “ 4p2. Moreover, for any vector u with |u| “ 1,

x∇2W pxqu, uy “ 2pp1` |x|2qp´1

ˆ

1´ 2p1´ pq
xx, uy2

1` |x|2

˙

,

so that
λ∇2W pxq ě 2pp1´ 2p1´ pqqp1` |x|2qp´1 “ c2ppqW pxq

´
1´p
p .

This entails pHc2,r
q with c2 “ 2pp1´ 2p1´ pqq and r “ p1´ pq{p. Finally, for γ0 ď p4pq

´1,

λ̄locpγ0, xq ď 2pp1` pt
1

2
|x| ´ 2u _ 0q2qp´1 ď cpW pxq

´
1´p
p ,

where cp is a constant independent of the dimension. Easy computations lead to

Cc,γ0 Ă tx P Rd,W pxq Àid du,
so that logpβpλ, c, γ0qq Àid d` logp1` cdLq Àid d. In particular, this implies that:

bd Àid d.

3For the sake of readability, we choose to provide parameters γ and N without taking into account the
parameters logn-terms and setting e “ 0. This means that the expressions of γ and N are correct up to some
multiplicative terms of the logn or de order (with arbitrary small e).
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The assumption bd Àid d is always satisfied for this class of (benchmark) potentials and it
seems that bd does not depend on p. This suggests that this property may be more universal.

2.5. Discussion and related results . The contributions of our paper deserve several com-
ments and have to be situated regarding the large state of the art on Bayesian consistency and
Bayesian computation. First, we emphasize that our results apply in log-concave situations
included the weakly convex case. and we only need some reasonnable assumptions on U that
are discussed in the next paragraphs.

2.5.1. Bayesian consistency.
Nature of the result. Theorem 2.3 describes the behaviour of the posterior mean

ş

θdπnpθq
and not the entire posterior distribution. In a sense, such a result seems less informative than
the knowledge of the behaviour of the entire distribution πn. However, a good behaviour of
the posterior mean requires a sharp control of the tails of the posterior distributions whereas
a “contraction rate” relative to the Hellinger distance (or with other distances such as the
Kullback-Leibler or total variation ones) sometimes blurs the tail behaviour of the posterior.
We refer to [CvdV12] for a meaningful illustration in high dimensional linear models of the
efforts needed to extend posterior concentration to posterior mean consistency.

Assumption pALq. To obtain a Bayesian posterior contraction rate, we introduced the
(smoothness) Assumption pALq: the function Upξ, .qmust have a Lipschitz gradient, uniformly
in ξ. Such an assumption is standard in the optimization community (see [Nes04, Bub15])
and essentially enables to quantify the error made when using a first order Taylor expansion.
In optimization theory, L-smooth functions are then used to produce descent lemma. For
us, it is instead used for lower-bounding the normalizing constants of the Bayesian posterior
distributions (see Equation (27)). This assumption also appears in the recent contribution
[MHW`19] but the L-smooth property is only assumed for the function θ ÞÝÑ Eθ‹rUpξ, θqs
associated with either a strong or weak convex assumption on U on U (Assumptions (S.1) or
(W.1) of [MHW`19]).

Assumption pIW1pcqq. We naturally introduced a separation assumption that is related to
the ability of hypothesis testing in the statistical model. Statistical test has a longstanding
history in Bayesian literature (see e.g. [LC86, Bir83, GGvdV00, CvdV12] among others). In
general, the former papers build some global statistical tests using metric considerations with
covering arguments on the statistical models with the help of the Hellinger distance or the
Kullback-Leibler divergence. Here, our assumption is related to a separation with the help of
the Wasserstein 1 distance over Pθ and the function Ψ involved in pIW1pcqq is used to build
a global test. It is straightforward to verify that pIW1pcqq is satisfied in the location models
with Ψ “ Id since in that case |πθ1pIdq ´ πθ2pIdq| “ |θ1 ´ θ2|.

In a sense, a link exists between the conjonction of pALq`pIW1pcqq and a metric complexity
(in terms of covering numbers) as used in the seminal contribution [GGvdV00][Equation (2.2)].
In particular, it is a straightforward exercise to prove that if Npε, θXK, dKLq is the covering
number of the statistical model with the Kullback-Leibler divergence and if K is a compact
subset of Rd, then

logNpε, θ XK, dKLq À d logp
?
Lε´1q.

Hence, pIW1pcqq shall be thought of as a way to both “compactify” the space where θ is
living and make a local link between dpPθ,Pθ‹q and |θ ´ θ‹|. This is useful to avoid sieve
considerations (see i.e. [GGvdV00, vdVvZ08, SW01] for example) and this allows to quantify
the tail behaviour of the posterior distribution πn far away from θ‹ (see e.g. [CvdV12]).
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Finally, pIW1pcqq also has a tight link with Assumption pW.1q of [MHW`19], stated below:

Assumption 2.8 (Assumption pW.1q-[MHW`19]). If F pθq :“ Eθ‹ | log pθpξqs, we have:

x∇F pθq, θ‹ ´ θy ě hp|θ ´ θ‹|q,

where h is a non-decreasing convex function such that hp0q “ 0.

For any θ P Rd, we introduce θt “ θ‹`tpθ´θ‹q and fθptq “ KLpPθt ,Pθ‹q. A straightforward
computations show that Assumption pW.1q implies that:

KLpPθ,Pθ‹q “ fθp1q “ fθp0q `

ż 1

0
f 1θpsqds

“

ż 1

0
x∇F pθsq, θ‹ ´ θyds “

ż 1

0

x∇F pθsq, θ‹ ´ θsy
s

ds ě
ż 1

0

hps|θ ´ θ‹|q

s
ds.

Hence, if h is smooth and h1p0q ą 0, then the convexity of h yields:

KLpPθ,Pθ‹q Á h1p0q|θ ´ θ‹|.

Oppositely, if h1p0q “ 0, it is reasonable to assume that h is β-Hölder around θ‹ with β ą 1 and
we obtain again a local inequality of the form KLpPθ,Pθ‹q Á |θ ´ θ‹|β near θ‹. In the mean-
time, since h is non-decreasing, it is also possible to use

ş1
0
hps|θ´θ‹|q

s ds ě
ş1
1{2

hps|θ´θ‹|q
s ds ě

h
´

|θ´θ‹|
2

¯

. Therefore, pW.1q implies that a β ą 1 exists such that:

KLpPθ,Pθ‹q Á |θ ´ θ‹|β ^ h
ˆ

|θ ´ θ‹|

2

˙

.

The link between pIW1pcqq and pW.1q is then made with the help of functional inequalities:
if Pθ‹ is strongly log-concave, then Pθ‹ satisfies the T1 inequality (see e.g. [Led01]) and
W1pPθ,Pθ‹q À

a

KLppPθ,Pθ‹q. More generally, if Pθ‹ satisfies a sub-Gaussian concentration
inequality, [BG99] shows that this Talagrand inequality still holds. Hence, pIW1pcqq also
implies a lower bound on the KL-divergence in many log-concave reasonnable situations.

Assumption pPIUq. At last, we also needed a uniform upper bound on the Poincaré con-
stant involved in the family of distributions pπθqθPθ to obtain a common constants in the
concentration inequalities. Note that, among other settings, Assumption pPIUq holds true
for any location model since, in this case, the Poincaré constant of each distribution πθ is
independent of θ, as indicated by the next proposition:

Proposition 2.11. If Upξ, θq “ Upξ´θq, for all ξ and θ, then CP pπθq “ CP pπq where CP pπq
stands for the Poincaré constant related to π9 e´U .

We also point out that this assumption may be verified in a more general setting using the
upper bound of [KLS95] (see the statement in Theorem 2.2). Finally, the Poincaré inequality
is satisfied as soon as the log-concave distribution has a second order moment. We observe
here that CUP may include a dimensional effect even though it is clear that it is not the case
for strongly log-concave probability distributions with the help of the Bakry-Emery result
(see [BE83]). If we believe in the Kannan-Lovász-Simonovits conjecture [KLS95], then the
constant CUP may be considered in our model as independent from the dimension d, which
entails a correct minimax dependency of the Bayesian strategy with respect to d.
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Consistency rate. If we now pay attention to the convergence rate obtained in Theorem 2.3,
we emphasize that when the separation is sharp, i.e. when αc “ 1 in pIW1pcqq, we obtain the
standard minimax convergence rate d

n up to a logpnq term, and this result is in a sense non-
asymptotic (a universal constant could be exhibited with a price of a huge technicalicity). In
comparison with [MHW`19], we also obtained a slightly better convergence rate of pd{nq1{αc
(see Corollary 1 of [MHW`19]). But in general situations, their value of β is equal to 1 so
that the rates derived from Theorem 2.3 and Corollary 1 of [MHW`19] are equivalent.

2.5.2. Ergodicity and Cesaro averaging.
Convex and strongly convex function. The simulation of the posterior distribution is, in

our work, provided by the Langevin diffusion with the potential ĂWn, which is a convenient
alternative approach to Metropolis-Hastings Markov chain strategy. In Theorems 2.4 and 2.5,
we only used a Poincaré inequality instead of a strongly log-concave settings, as it is dealt with
in [Dal17, MCJ`19] for the Langevin diffusion or in [DCWY18] for the MCMC algorithm. We
emphasize that we still derive some explicit exponential bounds of the semi-group and we
discuss below some key underlying ingredients.
L2-distance. Our bounds are obtained under the L2-norm, i.e. we manage exactly the mean-

squared error related to the estimation of the posterior mean. Let us remark that, our results
could be extended to a larger class of functions, for instance Lipschitz ones, which would lead
us to Wasserstein 1 bounds between the occupation measure of the Euler scheme and the
target measure πn. In the weakly convex setting, this extension would imply other constants.
More precisely, in Proposition 6.3, which is a crucial step of the proof in the weakly convex
case, the fact that g is the solution of the Poisson equation related to f “ Id plays a central
role in the constants. We emphasize that in our setting involving averages of Dirac measures,
total variation distance or Kullback-Leibler divergence do not make sense. Furthemore, our
objective being to integrate the identity function, such distances seem inapropriate to this
problem.

Shifted Cesaro average. We finally point out that we introduce in our work a slight modi-
fication that consists in shifting from r0, ts to rt0, ts the time origin for computing the Cesaro
average. The main reason is that the approximation pθn,t with a Cesaro averaging over r0, ts
forgets the (wrong) initialization

a

Jµ,0 of the Langevin diffusion with a speed t´2. In com-
parison, the shifted Cesaro average also forgets the initialization at the same speed but if we
begin the averaging procedure at time t0, then we benefit from the exponential ergodicity of
the process, which entails an initial error in our approximation of the order

a

Jµ,0e
´λ1,nt0 .

2.5.3. Warm start and continuous complexity cost. Warm start has been reported to signif-
icantly improve the computational cost of Bayesian strategy in earlier works. We refer to
[Dal17] for an extended discussion. In our paper, this is translated by Jµ,0 introduced in
Theorem 2.4 and we provide a strategy in Proposition 3.3 that gives an exponential scaling
with d: we recover here the dependency described in Section 3.2, condition (6) of [DM19].
This is due to the very nature of the L2 distance that poorly scales with d, contrary to the
Kullback-Leibler divergence (see e.g. Lemma 7 of [MCJ`19]).

Nevertheless, we emphasize that Jµ,0 is only important for continuous time estimators,
which hold under very general assumptions: Theorem 2.4 may be stated only under the
existence of a Poincaré constant λ´1

1,n without the convex settings. The complexity, as reported
in Corollary 2.7, is Opε2

ndrlogpdq ` logpnqsq: it corresponds to a standard sampling procedure
that needs Opλ´1d logpd{εqq to obtain an ε accuracy, but this formulation is misleading: the
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spectral gap λ seriously improves the amount of time needed to sample πn and it is remarkable
to observe that the number of observations positively influences the final horizon of simulation.

Regarding now the convex framework and especially the discretization, we point out that
warm start is not so important as stated in Theorem 2.8 and Theorem 2.9. For example,
in the strongly convex case, it is possible to completely anneal some “far” initialization of
the discretization (see Theorem 5.1, iiiq below) using exponential convergence of coupled
trajectories.

2.5.4. Discretization. Overall, the leading take-home message when considering the discrete
approximation and the concrete estimator is that in both strongly and weakly convex case,
we obtain a complexity that evolves as a polynomial of n and d, the complexity being much
lower in the strongly convex case. It is also important to notice that the continuous approach
completely blurs the real complexity of an effective approximation (the statement of Corollary
2.7 has nothing in common with the ones of Theorem 2.8 or Theorem 2.9). All the more, we
observe that in our results, the complexity of Bayesian learning is seriously damaged with the
loss of strong convexity, both in terms of n and d.

Second, as an intermediary step, we obtained the complexity to compute an ε-approximation
of the posterior mean such that the M.S.E. becomes smaller than ε2. This is the purpose of
Theorems 5.1 and 6.2 (see also Corollary 6.4), respectively in the (uniformly) strongly convex
and weakly convex cases. The related orders of complexity are given in Table 1, where we
also draw some comparisons with some state of the art results related to the complexity of
Bayesian sampling, but up to a normalization factor: actually, in the recent papers [DMM19,
DRDK19, MCC`19] that we compare with, the complexity is defined in a slightly different
way, omitting the Monte-Carlo factor. More precisely, oppositely to our paper based on a
Cesaro average (involving only one path), these papers use a classical Monte-Carlo approach
to approximate πpfq (for a given function f) by N´1

MCpZ1 ` . . .` ZNMC
q where pZjq1ďjďNMC

denotes an i.i.d. sequence of NMC i.i.d. random variables. Then, for a given ε, these papers
define the complexity as the number nε of iterations of the Euler-scheme to compute Z1.
In order to draw some fair comparisons, we need to consider the “true” complexity, i.e. to
multiply their complexity nε by MCpεq “ VarpZ1qε

´2, i.e. by the number of Monte-Carlo
simulations that are necessary to obtain a Monte-Carlo M.S.E lower than ε2. Furthermore,
since the involved function is Id, it is reasonable to assume that VarpZ1q9d, so that we assume
that the true complexity of the compared papers is nεdε´2. Finally, these papers state results
with different distances: Total Variation, Kullback-Leibler, W1 or W2. We only consider W1

or W2 results, which seem to be the only ones that can apply to the non-bounded (Lipschitz)
function Id.

3. Bayesian posterior mean consistency

This paragraph is dedicated to the proof of Theorem 2.3.

3.1. Poincare inequality and consequences. We state a famous result for the family pPθqθPRd of
Bobkov and Ledoux (see e.g. [BL97]), borrowed in [Led01]4.

4In [BL97], the authors assume that the function f is bounded. However, when the concentration function
δ2

4Ck
^ δ

2
?
Ck

goes to 8 when δ Ñ 8, the boundedness assumption can be removed (see Proposition 1.7 in
[Led01] for details).
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pSCρq and pALq Weakly convex and pALq

γ nε Npεq γ nε Npεq

This work
M.S.E ď ε2 Opd´1ε2q - Opdε´4q Opd´2p1`rqε2q - Oidpd3`4rε´4q

Opd´p5{2`2rqεq - Oidpd9{2`4rε´3q

[DMM19]
W 2

2 ď ε2 Oidpd´1ε2q Oidpdε´2q Oidpd2ε´4q

KL ď ε2 Oidpd´1ε2q Oidpdε´2q Oidpd2ε´4q Opd´1ε´2q Oidpdε´4q -
[DRDK19]
W 2

1 ď ε2 - - - Oidpd´1ε3q Oidpd2ε´4q Oidpd3ε´6q

W 2
2 ď ε2 - - - Oidpd´1ε4q Oidpd2ε´6q Oidpd3ε´8q

[MCC`19]
KL ď ε2 Oidpd´1{2εq Oidpd1{2ε´1q Oidpd3{2ε´3q

Table 1. Complexity Npεq of an ε-approximation with a constant step-size γ
of several methods. We skip the effet of ρ and L for the sake of readability.

Proposition 3.1. Assume pPIUq, then for any differentiable k-Lipschitz real function f :

@θ P θ @n P N˚ Pθ

˜
ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

fpξiq ´ πθpfq

ˇ

ˇ

ˇ

ˇ

ˇ

ě δ

¸

ď 2e
´n δ2

4k2CU
P

^ δ

2k
?
CU
P .

We will apply this result for f “ Ψ involved in pIW1pcqq and with f “ ∇Uθ. In particular, using
Proposition 3.1, we obtain the following result (see the proof in [GPP20]).

Corollary 3.2. Let pIW1pcqq hold and denote by Ψ the corresponding 1-Lipschitz function. Then,
iq

@θ P Rd Pθ

˜
ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

Ψpξiq ´ EθΨpξ1q

ˇ

ˇ

ˇ

ˇ

ˇ

ě δ

¸

ď 2e
´n δ2

4CU
P

^ δ

2
?
CU
P .

iiq

@θ P Rd Pθ

˜
ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

∇θUpξi, θq

ˇ

ˇ

ˇ

ˇ

ˇ

ě δ

¸

ď 2de
´n δ2

4L2CU
P
d
^ δ

2L
?
CU
P
d .

Corollary 3.2 will be an essential ingredient for the construction of some efficient statistical tests in
the family of probability distributions pPθqθPRd . This key corollary is used in Section 3.2.1.

3.2. Consistency rate of the posterior mean. To study the behavior of prθnqně0 introduced in
Equation (4), we adopt the presentation of [CvdV12] and in particular the link between the posterior
mean and the posterior distribution. As noticed in [CvdV12], there is an important need to upper
bound the tail of the posterior distribution (far from θ‹). To this end, for a non-negative sequence
pεnqně1 fixed later on, we introduce the separation radius:

ra,n “ aεn ` r, (22)

where a will be a constant picked sufficiently large, and r will vary from 0 to `8.
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3.2.1. Statistical tests. Statistical tests have a long standing history in Bayesian literature (see e.g.
[LC86, GGvdV00]) to obtain consistency results as well as rates of convergence of Bayes procedures.
We introduce an appropriate family of tests pφrnqně1 parametrized by r ą 0 (see Equation (22)) and
defined for n P N‹ by:

φrn pξ
nq “ 1

| 1n
řn
i“1 Ψpξiq´Eθ‹ rΨpΞqs|ě

cpra,nq

2

. (23)

It is expected that φrn is equal to 0 with an overwhelming probability under the null hypothesis Pθ‹
whereas φrn it is equal to 1 w.o.p. under Pθ when |θ ´ θ‹| is large enough thanks to pIW1pcqq. We
prove the following estimations in [GPP20] of the first and second type error of pφrnqně1.

Proposition 3.3. The sequence of tests pφrnqně1 satisfies

iq Pθ‹ pφrn pξnq “ 1q ď 2e
´n

cpra,nq
2

16CU
P

^
cpra,nq

4
?
CU
P ,

iiq supθ : |θ´θ‹|ěra,n Pθ pφ
r
n pξ

nq “ 0q ď 2e
´n

cpra,nq
2

16CU
P

^
cpra,nq

4
?
CU
P .

The next result is a technical estimation related to the denominator (normalizing constant) involved
in the posterior distribution distribution. A simple application of Corollary 3.2 yields the next result.

Lemma 3.4. For any t ą 0, define the sets Atn “
 
ˇ

ˇ

1
n

řn
i“1∇θUpξi, θ‹q

ˇ

ˇ ď t
(

, then:

@n P N‹ @t ą 0 Pθ‹ptAtnucq ď 2de
´n

˜

t2

4L2CU
P
d
^ t

2L
?
CU
P

¸

.

3.2.2. Proof of the posterior mean consistency .

Proof of Theorem 2.3. Our proof adopts the strategy of [CvdV12].
Step 1: Decomposition of the quadratic risk. We remark that for all n P N‹:

Eθ‹
”
ˇ

ˇ

ˇ

rθn ´ θ
‹
ˇ

ˇ

ˇ

pı

“ Eθ‹
„
ˇ

ˇ

ˇ

ˇ

ż

Rd
pθ ´ θ‹qdπnpθq

ˇ

ˇ

ˇ

ˇ

p

ď Eθ‹
„
ż

Rd
|θ ´ θ‹|

p dπnpθq


“ pEθ‹
„
ż 8

0

tp´1πnp|θ ´ θ
‹| ě tqdt



“ pEθ‹
„
ż aεn

0

tp´1πnp|θ ´ θ
‹| ě tqdt`

ż 8

aεn

tp´1πnp|θ ´ θ
‹| ě tqdt



ď apεpn ` p

ż `8

0

rp´1
a,n Eθ‹ rπnp|θ ´ θ‹| ě ra,nqsdr, (24)

where we used the Jensen inequality in the second line, an integration by part in the third line, a
direct integration

şaεn
0

ptp´1dt “ apεpn in the last line associated with the Fubini relationship.
Step 2: Use of the tests pφrnqně1. We now use the tests pφrnqně1 and the sets pAtnq, we can write:

Eθ‹ rπnp|θ ´ θ‹| ě ra,nqs “Eθ‹ rφrnpξnqπnp|θ ´ θ‹| ě ra,nqs

` Eθ‹
“

p1´ φrnpξ
nqqπnp|θ ´ θ

‹| ě ra,nq1Atn
‰

` Eθ‹
“

p1´ φrnpξ
nqqπnp|θ ´ θ

‹| ě ra,nq1tAtnuc
‰

. (25)

From this expression we can deduce the following inequality:

Eθ‹ rπnp|θ ´ θ‹| ě ra,nqs ďEθ‹ rφrnpξnqs ` Eθ‹
“

p1´ φrnpξ
nqqπnp|θ ´ θ

‹| ě ra,nq1Atn
‰

` Pθ‹ptAtnucq.
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‚ Study of Eθ‹
“

p1´ φrnpξ
nqqπnp|θ ´ θ

‹| ě ra,nq1Atn
‰

. We write that:

πnp|θ ´ θ
‹| ě ra,nq “

ż

θ : |θ´θ‹|ěra,n

dπnpθq “

ż

θ : |θ´θ‹|ěra,n

e´Wnpξ
n,θq

e´Wnpξn,θ‹q
dπ0pθq

ż

Rd

e´Wnpξ
n,θq

e´Wnpξn,θ‹q
dπ0pθq

. (26)

At this stage we control the denominator and the numerator separately. Let us denote by Zt “
π0pBpθ

‹, tqq the prior mass of the Euclidean ball centered at θ‹ and of radius t. We have

log

ˆ
ż

Rd

e´Wnpξ
n,θq

e´Wnpξn,θ‹q
dπ0pθq

˙

ě log

˜

ż

Bpθ‹,tq

e´Wnpξ
n,θq

e´Wnpξn,θ‹q
dπ0pθq

¸

ě log

˜

ż

Bpθ‹,tq

e´Wnpξ
n,θq

e´Wnpξn,θ‹q

dπ0pθq

Zt

¸

` logZt

ě

ż

Bpθ‹,tq

n
ÿ

i“1

rUpξi, θ
‹q ´ Upξi, θqs

dπ0pθq

Zt
` logZt,

where we used the Jensen inequality in the last line with the concave function log and the normalized
measure dπ0Z

´1
t over Bpθ‹, tq. Using that ∇θUpξ, .q is L-Lipschitz we get

@x P Rd Upξ, θ1q ´ Upξ, θ2q ď xθ1 ´ θ2,∇θUpξ, θ2qy `
L

2
}θ1 ´ θ2}

2,

for all pθ1, θ2q P Rd, which implies that:

@i P t1, . . . , nu @θ P Rq |Upξi, θq ´ Upξi, θ
‹q ´ xθ ´ θ‹,∇Upξi, θ‹qy| ď

L

2
|θ ´ θ‹|2.

Using a sum over i and the triangle inequality, we then deduce that:

@θ P Rd
n
ÿ

i“1

Upξi, θ
‹q ´ Upξi, θq ě ´

ˇ

ˇ

ˇ

ˇ

ˇ

xθ ´ θ‹,
n
ÿ

i“1

∇θUpξi, θ‹qy

ˇ

ˇ

ˇ

ˇ

ˇ

´ n
L

2
|θ ´ θ‹|2.

The Cauchy-Schwarz inequality yields:
ˇ

ˇ

ˇ

ˇ

ˇ

xθ ´ θ‹,
n
ÿ

i“1

∇θUpξi, θ‹qy

ˇ

ˇ

ˇ

ˇ

ˇ

ď |θ ´ θ‹|

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

∇θUpξi, θ‹q

ˇ

ˇ

ˇ

ˇ

ˇ

.

An integration over Bpθ‹, tq with the normalized measure π0Z
´1
t leads to:

log

ˆ
ż

Rd

e´Wnpξ
n,θq

e´Wnpξn,θ‹q
dπ0pθq

˙

ě ´n
L

2
t2
π0pBpθ

‹, tqq

Zt
´ t

›

›

›

›

›

n
ÿ

i“1

∇θUpξi, θ‹q

›

›

›

›

›

` logpZtq

ě ´n
L

2
t2 ´ t

›

›

›

›

›

n
ÿ

i“1

∇θUpξi, θ‹q

›

›

›

›

›

` logpZtq.

To lower bound the denominator, we use the set Atn and we have

log

ˆ
ż

Rd

e´Wnpξ
n,θq

e´Wnpξn,θ‹q
dπ0pθq

˙

1Atn ě

˜

´n
L

2
t2 ´ t

›

›

›

›

›

n
ÿ

i“1

∇θUpξi, θ‹q

›

›

›

›

›

` logpZtq

¸

1Atn

ě

ˆ

´nt2
ˆ

L

2
` 1

˙

` logpZtq

˙

1Atn . (27)
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Using (27) with (26) and the Jensen Inequality, we have

Eθ‹
`

p1´ φrnpξ
nqqπnp|θ ´ θ

‹| ě ra,nq1Atn
˘

ď

Eθ‹
”

p1´ φrnpξ
nqq

ş

θ:|θ´θ‹|ěra,n
e´Wnpξ

n,θq

e´Wnpξn,θ‹q
dπ0pθq

ı

Zte
´npL2 `1qt2

ď

ż

θ:|θ´θ‹|ěra,n

Eθ‹
„

p1´ φrnpXqq
e´Wnpξ

n,θq

e´Wnpξn,θ‹q



dπ0pθqe
nt2pL2 `1qpZtq

´1

ď pZtq
´1ent

2pL2 `1q sup
tθ :|θ´θ‹|ěra,nu

Eθ r1´ φrnpξnqs

ď 2ent
2pL2 `1q´log π0pBpθ

‹,tqqe
´n

cpra,nq
2

16CU
P

^
cpra,nq

4
?
CU
P ,

where in the penultimate line we used a change of measure from Pθ‹ to Pθ.
‚ Study of Eθ‹ rφrnpξnqs. Using the first type error given by iq of Proposition 3.3, we have:

Eθ‹rφrnpξnqs ď 2e
´n

cpra,nq
2

16CU
P

^
cpra,nq

4
?
CU
P .

‚ Study of Eθ‹
“

p1´ φrnpξ
nqqπnp|θ ´ θ

‹| ě ra,nq1tAtnuc
‰

. We upper bound Pθ‹ptAtnucq with t “ tr,n and
apply Lemma 3.4. We deduce that:

Pθ‹ptAtnucq ď 2de
´n

˜

t2r,n

4L2CU
P
d
^

tr,n

2L
?
CU
P
d

¸

.

We then obtain that:

Eθ‹ rπnp|θ ´ θ‹| ě ra,nqs

ď 4ent
2
r,np

L
2 `1q´log π0pBpθ

‹,tr,nqqe
´n

cpra,nq
2

16CU
P

^
cpra,nq

4
?
CU
P ` 2de

´n

˜

t2r,n

4L2CU
P
d
^

tr,n

2L
?
CU
P
d

¸

.

Step 3: Small ball calibration and prior mass We shall now adjust the different parameters in order to
obtain the best possible rate for prθnqně0. We choose tr,n according to

tr,n “
cpra,nq ^

a

cpra,nq

A
,

with A sufficiently large such that:

nt2r,n

ˆ

L

2
` 1

˙

´ n
cpra,nq

2

16CUP
^
cpra,nq

4
b

CUP

ď ´n
cpra,nq

2

32CUP
^
cpra,nq

8
b

CUP

.

In the meantime, we get that:

´ log π0pBpθ
‹, tr,nqq ď ´ log π0

´

Bpθ‹, A´1rcpaεnq ^
a

cpaεnqsq
¯

.

εn will be chosen close to 0 and c is increasing so that:

´ log π0pBpθ
‹, tr,nqq ď ´ log π0

`

Bpθ‹, A´1cpaεnqq
˘

.

Since π0 “ e´V0 with V0 a C1
1 function, we then deduce that:

@θ P Bpθ‹, δq |V0pθq ´ V0pθ
‹q| ď δ}∇V pθ‹q} ` 1

2
δ2,



ON THE COST OF BAYESIAN POSTERIOR MEAN STRATEGY FOR LOG-CONCAVE MODELS 21

which implies:

´ log π0pBpθ
‹, tr,nq

ď ´ log

˜

ż

Bpθ‹,A´1cpaεnqq

eV0pθ
‹
q´A´1cpaεnq}∇V pθ‹q}´A´2cpaεnq

2
{2dλdpθq

¸

“ ´V0pθ
‹q `A´1cpaεnq}∇V pθ‹q} `

A´2cpaεnq
2

2
` d logpAcpaεnq

´1q ´ log λdpBp0, 1qq

ď ´V0pθ
‹q `A´1cpaε2q}∇V pθ‹q} `

A´2cpaε2q
2

2
` d logpcpaεnq

´1q.

Using the behaviour of c near 0 (see pIW1pcqq), a constant Cθ‹ exists such that:

´ log π0pBpθ
‹, tr,nq ď logpCθ‹q ` dαc logpε´1

n q.

We then obtain that a universal constant K exists such that:

Eθ‹ rπnp|θ ´ θ‹| ě ra,nqs À de
´ n
K

«

cpra,nq
2

L2CU
P
d
^

cpra,nq

L
?
CU
P
d

ff

`dαc logpε´1
n q

.

Finally, Equation (13) yields for K large enough:

Eθ‹ rπnp|θ ´ θ‹| ě ra,nqs À de
´ n
K

tra,nu
2αc

L2CU
P
d 1ra,nď1 ` de

´ n
K

logpra,nq`1

L
?
CU
P
d 1ra,ně1. (28)

Step 4: Convergence rate We use (24) and (28) and obtain that:

Eθ‹r}rθn ´ θ‹}ps À paεnq
p ` d

ż `8

0

rp´1
a,n

˜

e
´ n
K

tra,nu
2αc

L2CU
P
d 1ra,nď1 ` e

´ n
K

logpra,nq`1

L
?
CU
P
d 1ra,ně1

¸

dr

À εpn ` d

«

ż 1

aεn

rp´1e
´ n
K

r2αc

L2CU
P
d dr `

ż `8

1

rp´1e
´ n
K

logprq`1

L
?
CU
P
d dr

ff

.

If we choose εn such that

εn “

ˆ

L2CUP d
log n

n

˙1{2αc

,

we then observe that
ż `8

aεn

rp´1e
´ n
K

r2αc

L2CU
P
d dr “

ˆ

KL2CUP d

n

˙p{2αc

Γ

ˆ

p

2αc
; a2αc logpnq

˙

“ Oidpεpnq.

The second integral may be made exponentially small (in terms of n). �

We end this paragraph with a rapid discussion on the (random) moments of the posterior distriub-
tion Mn,2 and Mn,4 (used later on for the mixing rate of the Langevin strategy):

Mn,2 “ Eπn
`

|Id|
2
˘

“ πnp|Id|
2q Mn,4 “ Eπn

`

|Id|
4
˘

“ πnp|Id|
4q. (29)

The expected values of these moments can be upper bounded using Theorem 2.3.

Corollary 3.5. If π0 is a C1pRd,Rq log-concave prior, if U is C1
L and if pIW1pcqq holds, then

ErMn,2s Àid |θ
‹|

2
` tL2CUP du

1{αc

ˆ

log n

n

˙1{αc

and

ErMn,4s Àid |θ
‹|

4
` tL2CUP du

2{αc

ˆ

logpnq

n

˙2{αc

.
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Proof. We observe that |θ|p ď 2p´1p|θ ´ θ‹|p ` |θ‹|pq so that

ErMn,ps ď 2p´1|θ‹|p ` 2p´1Eθ‹ pEπn p|θ ´ θ‹|pqq

ď 2p´1|θ‹|p ` 2p´1Eθ‹
ˆ
ż

θ

|θ ´ θ‹|pdπnpθq
˙

.

We then use the argument of Theorem 2.3, which concludes the proof. �

4. L2-convergence of pθ̂pnqt q towards rθn

This section is dedicated to the analysis of the (shifted) Cesaro averages (8) and (9) of the continuous-
time Langevin diffusion defined in (7) for the computation of the posterior mean prθnq, whose dynamical
is recalled below:

dX
pnq
t “ ´∇ĂWnpX

pnq
t qdt`

?
2dBt with @x P Rd ĂWnpxq “ logpπ´1

0 pxqq
loooooomoooooon

:“V0pxq

`

n
ÿ

i“1

Upξi, xq. (30)

In this Section, ĂWn is sample dependent and we work with a fixed sample pξ1, . . . , ξnq, the randomness
is then brought by the Brownian motion pBtqtě0.

4.1. Basics. Before going further, let us recall some basic properties and notations related to SDE (30)
(familiar readers may skip Section 4.1). When ĂWn is Lipschitz continuous, existence and uniqueness
classically holds for the solution of (30) and Xpnq is a Markov process with infinitesimal generator Ln
defined by:

@f P C2pRd,Rq Lnfpxq “ ´x∇ĂWnpxq,∇fpxqy `∆fpxq. (31)

We denote its semi-group by pPnt qtě0. However, in our setting, ĂWn may be only locally Lipschitz
continuous and in this case, one has to check that the solutions do not explode in finite time. Such a
property is ensured by the convexity assumptions. More precisely, let I2 refers to x ÞÝÑ }x}2, then a
straightforward computation shows that:

LnI2pxq “ ´2
n
ÿ

i“1

xx,∇xUpξi, xqy ´ 2xx,∇V0pxqy ` 2.

The function Upξi, .q being convex and coercive for any ξi, we have lim|x|ÞÝÑ`8xx,∇xUpξi, xqy “ `8
whereas since V0 “ logpπ´1

0 p.qq is strongly convex, we have

lim inf
xÝÑ`8

xx,∇V0pxqy

|x|2
ą 0.

Hence I2 satisfies a Lyapunov mean-reverting condition: a pair pα, βq P R2
` exists such that:

LnI2 ď β ´ αI2.

Applying standard results (see [EK05, Has02]), we get the non-explosion of the solutions and the
existence of an invariant distribution. Combined with the ellipticity of the diffusion, this yields the
following result:

Proposition 4.1. Let V0 be strongly convex and x ÞÑ Upξ, xq be convex and coercive for every ξ. Then,
a.s. in ξn, Equation (7) admits a unique strong solution Xpnq which defines a uniformly elliptic, positive
recurrent Markov process whose unique invariant distribution is the posterior distribution πn.
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4.2. Ergodicity. We denote the law of the process at time s, initialized at any point x P Rd by PX
pnq
s

x .
From Proposition 4.1, this law is absolutely continuous with respect to the Lebesgue measure for any
finite time s ą 0, and therefore absolutely continuous with respect to πn. We shall denote by mpnqµ,s
the corresponding density (given by the Radon Nykodim Theorem) at time s when the process starts
from a randomized initial state distributed according to µ:

@x P Rd mpnqµ,spxq “
dPX

pnq
s

µ

dπn
pxq.

The asymptotic consistency of pθn,t is related to the ergodic behavior of pXpnqs qsě0, i.e. the conver-

gence of PX
pnq
s

x towards the unique equilibrium πn. Such a long time convergence will be asserted in
terms of some decrease towards0 of some L2-norm. To make this discussion more precise we recall a
straightforward consequence of Theorem 2.2.

Proposition 4.2. The measure πn is log-concave and satisfies a Poincaré inequality:

DCP,n ą 0 @f P L2pπnq V arπnpfq ď CP,nπnp|∇f |2q.

Below, we will frequently use the following notation

@t ě 0 Jµ,t “ }m
pnq
µ,t ´ 1}2L2pπnq

. (32)

We state the quantitative consequence on the convergence of PX
pnq
s

x borrowed from [BBCG08].

Theorem 4.3 (L2-ergodicity of pXpnqs qsě0). For any t ą 0:

@f P L2pπnq

ż

xPRd
pExrfpXpnqt qs ´ πnpfqq

2dπnpxq ď e
´ 2
CP,n

t
ż

xPRd
pfpxq ´ πnpfqq

2dπnpxq.

For any t ě t0 ě 0, we have
Jµ,t ď e

´ 2
CP,n

pt´t0q
Jµ,t0 .

Theorem 4.3 assesses an exponential convergence of the distribution PX
pnq
s

x towards πn in terms
of the variance introduced above. This result is translated into a convergence of mpnqµ,s towards the
constant function 1 in L2pπnq. The spectral gap λ1,n will refer to the inverse of the Poincaré constant:

λ1,n “
1

CP,n
. (33)

Remark 5. The constant CP,n (or λ1,n) will be fundamental to assess the efficiency of the Langevin
diffusion for the approximation of rθn. We will discuss on the size of the spectral gap below, in particular
its dependency with the sample size n and with the dimension d.

4.3. Convergence of ppθn,tqtě0 towards rθn. We introduce the cumulative integral:

@t ą 0 Sn,t “

ż t

0

Xpnqs ds so that pθn,t “
Sn,t
t
.

Of course, if Xpnq were initialized with the invariant distribution πn, we would then have

Eπnrpθn,ts “
1

t
Eπn

„
ż t

0

Xpnqs ds


“
1

t

ż t

0

Eπn
”

Xpnqs

ı

ds “ rθn,

where the last equality comes from the invariance property. The measure πn being unknown, the
process pXpnqs q is initialized differently and we need to translate the convergence of PX

pnq
s

x towards πn.
Below, we will use the Chasles decomposition and write that

Sn,t “ Sn,t0 ` Sn,t0,t where Sn,t0,t “

ż t

t0

Xpnqs ds.
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Sn,t0,t will bring the main part of the variance of the estimation. The Young inequality yields:

Eµ
ˆ

ˇ

ˇ

ˇ

pθn,t ´ rθn

ˇ

ˇ

ˇ

2
˙

ď

2Eµ
´

|Sn,t0 ´ t0
rθn|

2
¯

` 2Eµ
´

|Sn,t0,t ´ pt´ t0q
rθn|

2
¯

t2
. (34)

The estimation of the two terms of the last inequality is based on the use of the convergence of the
process towards its invariant distribution. This is the content of the two following proposition whose
proof is deferred to the supplementary document [GPP20, Section 2].

Proposition 4.4. For any t0 ą 0:

Eµ
´

|Sn,t0 ´ t0
rθn|

2
¯

ď t20Vn,2 ` t0

a

Vn,4
a

Jµ,0

λ1,n
.

For any t ě t0 ą 0, we have

Eµ
´

|Sn,t0,t ´ pt´ t0q
rθn|

2
¯

ď
2pt´ t0qVn,2

λ1,n
`
a

Vn,4pt´ t0q2e´λ1,nt0
a

Jµ,0.

4.4. Proof of Theorem 2.4 and Theorem 2.5. This paragraph is devoted to the computation of
the rate of convergence of the Cesaro average ppθn,tq towards rθn.

Proof of Theorem 2.4 . Proof of iq: Our starting point is the Chasles decomposition associated to the
Young inequality (34). For any t0 ą 0, we apply Proposition 4.4. We obtain that:

Eµ
´

|pθn,t ´ rθn|
2
¯

ď 2
t20
t2
Vn,2 ` 2

t0
a

Vn,4
a

Jµ,0

λ1,nt2
`

4Vn,2
tλ1,n

`
a

Vn,4e´λ1,nt0
a

Jµ,0

We choose t0 “ αλ´1
1,n logptq and use the Cauchy-Schwarz inequality Vn,2 ď

a

Vn,4 and 2
?

2
?
a` b ě

?
a`

?
b. We then obtain that:

Eµ
´

|pθn,t ´ rθn|
2
¯

ď
a

Vn,4

«

2
?

2
α2 logptq2

λ2
1,nt

2

a

1` Jµ,0 `
4

tλ1,n
`
a

Jµ,0t
´α

ff

. (35)

�

Proof of Theorem 2.5 . We remark that

pθn,t0,t ´
rθn “

1

t´ t0

ż t

t0

rXpnqs ´ rθnsds “
Sn,t0,t ´ pt´ t0q

rθn
t´ t0

,

so that:

Eµ
´

|pθn,t0,t ´
rθn|

2
¯

“

Eµ
ˆ

ˇ

ˇ

ˇ
Sn,t0,t ´ pt´ t0q

rθn

ˇ

ˇ

ˇ

2
˙

pt´ t0q2
ď

2Vn,2
pt´ t0qλ1,n

`
a

Vn,4
b

e´2λ1,nt0Jµ,0,

where the last line is a straightforward application of Proposition 4.4. Using the Cauchy-Schwarz
inequality, Vn,2 ď

a

Vn,4, we obtain the conclusion. �

The proof of Corollary 2.7 is deferred to the supplementary document [GPP20, Section 3].

5. Discretization of the Langevin procedure - Strongly convex case

After a brief reminder, we present a general result of approximation of the Cesaro mean of a
trajectory in the strongly convex case. We specify this result in the Bayesian framework to assess the
cost of an optimal learning with a discrete LMC and strongly convex models.
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5.1. LMC approximation with strongly convex functions . In this section, we prepare the
proof of Theorem 5.2 by establishing a bound related to LMC-approximation with discretized Cesaro
averages for a given strong convex potential W . We thus introduce the following SDE:

dXt “ bpXtqdt`
?

2dBt,

where b “ ´∇W . The related approximation scheme is defined as follows: for a step-size sequence
pγkqkě1 of positive numbers introduced in Section 1.4 and its associated clock-time sequence ptkqkě1,
we define the discretization scheme pX̄tkqkě0 by: X̄0 “ x P Rd and for all k ě 0:

X̄tk`1
“ X̄tk ` γk`1bpX̄tkq `

?
2Uk`1, (36)

where for all k ě 1, Uk “ Btk`1
´ Btk . For one path of the discrete LMC (36), we introduce the

discrete and continuous Cesaro average built with the same Brownian trajectory :

pXγ
tk0 ,tN

“
1

tN ´ tk0

N´1
ÿ

j“k0

γj`1X̄tj and pXtk0 ,tN
“

1

tN ´ tk0

ż tN

tk0

Xsds.

We assume in this paragraph that W is ρ-strongly convex (Assumption pSCρq) and L-smooth
(Assumption pALq). It entails the following lower bound:

@px1, x2q P Rd xbpx1q ´ bpx2q, x1 ´ x2y ď ´
ρ

2
|x1 ´ x2|

2. (37)

Setting x‹ “ arg minW , the main result of the paragraph is as follows.

Theorem 5.1 (Discrete LMC pSCρq ´ pALq). Assume that W satisfies pALq and pSCρq.

iq If pγkqkě1 is a decreasing step-size such that γ1L ď 1{2, then

E
´

| pXγ
tk0 ,tN

´ pXtk0 ,tN
|2
¯

Àid
1

ρptN ´ tk0q
`

L2d

ρptN ´ tk0q

N
ÿ

j“k0

γ2
j `

L4d

ρ3ptN ´ tk0q

N
ÿ

j“k0

γ3
j .

iiq If γk “ γ with γL ď 1{2, then

E
´

| pXγ
tk0 ,tN

´ pXtk0 ,tN
|2
¯

Àid
1

ρpN ´ k0qγ
`
L2d

ρ
γ `

L4d

ρ3
γ2.

iiiq For ε P p0, 1s, use γ “ ρ
L2 d

´1ε2. Then, E| pXγ
tk0 ,tN

´ rθn|
2 Àid ε

2 when:

k0 Áid

ˆ

L

ρ

˙2

dε´2 logppd` |x´ x‹|qρ´1ε´1q and N ´ k0 :“
L2

ρ2
dε´4.

Remark 6. In the strongly convex case, the interesting point is that the process and its Euler discretiza-
tion get closer when the time goes on (at least in L2-sense). Thus, the corresponding Cesaro averages
inherit this property. The two first statements of the above theorem quantify this convergence. Then,
it remains to estimate the L2-distance between the Cesaro average of the true process and the mean
value of the invariant distribution to deduce the result. Note that the cost is proportional to dε´4.
A sharper expansion of the L2-error between the process and the Euler scheme could lead to ε´3 but
would involve some damages on the dependency with d.

The next paragraphs are devoted to the proof of Theorem 5.1.
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5.1.1. One-Step control. Let γ ą 0. Consider two starting points x and y in Rd of two processes
pZxt qtě0 and pZ̄yt qtě0 where pZxt qtě0 solves the stochastic differential equation:

Zxt “ x`

ż t

0

bpZxs qds`
?

2Bt @t P r0, γs,

whereas pZ̄yt qtě0 is the discretized trajectory built with the same Brownian motion5:

Z̄yt “ y ` tbpyq `
?

2Bt @t P r0, γs.

We first state an important technical proposition that compares the difference between pZ̄yt qtě0 and
pZxt qtě0 , along a step-size of length γ.

Proposition 5.2. If pSCρq and pALq hold, let γ ą 0, then

@px, yq P Rd @t P r0, γs Er|Zxt ´ Z̄
y
t |

2s ď |x´ y|2e´
ρ
4 t `

L2

ρ
dt2 `

4

3

L2

ρ
|bpyq|2t3.

The proof of Proposition 5.2 is postponed to [GPP20, Section 4].

5.1.2. Conclusion of the proof. In the final step of the proof, we shall need a precise control of
supkě0 E|bpX̄tkq|

2 and suptě0 E|bpZxt q|2. Below, we intensively use that when b “ ´∇W , with W
ρ-strictly convex and b L-Lipschitz, we have:

2
ρ2

L
pW pxq ´minW q ď |bpxq|2 ď

2L2

ρ
pW pxq ´minW q. (38)

We have the following proposition whose proof is deferred to [GPP20, Section 4].

Proposition 5.3. Assuming pSCρq, pALq and that γk “ γ1k
´δ with δ P r0, 1s and γ1L ď

1
2 , we have

the following control

sup
kě0

E|bpX̄tkq|
2 ď E|bpX̄0q|

2 ` d
L2

ρ2
and sup

tě0
E|bpZxt q|2 ď

2L2

ρ

„

ĂW pxq `
dL2

2ρ2



.

We now prove the main result of Section 5.

Proof of Theorem 5.1. iq. We consider the trajectory pXtqtě0 of (45) and its discretized counterpart
pX̄tj qjě1. For an initialization tk0 ě 0 and an ending discretization horizon tN ą tk0 .We observe that

pXγ
tk0 ,tN

´ pXtk0 ,tN
“

1

tN ´ tk0

˜

N
ÿ

j“k0

γjX̄tj ´

ż tN

tk0

Xtdt

¸

“
1

tN ´ tk0

˜

N
ÿ

j“k0

ż tj`1

tj

pX̄tj ´Xtqdt

¸

“

N
ÿ

j“k0

ωj,N,k0

«

1

γj

ż tj`1

tj

pX̄tj ´Xtqdt

ff

,

where ωj,N,k0 “
γj

tN´tk0
satisfies

řN
j“k0

ωj,N,k0 “ 1. The Jensen inequality yields:

| pXγ
tk0 ,tN

´ pXtk0 ,tN
|2 ď

N
ÿ

j“k0

ωj,k0,N

ˇ

ˇ

ˇ

ˇ

ˇ

1

γj

ż tj`1

tj

pX̄tj ´Xtqdt

ˇ

ˇ

ˇ

ˇ

ˇ

2

ď

k
ÿ

j“k0

ωj,k0,k
γj

ż tj`1

tj

ˇ

ˇX̄tj ´Xt

ˇ

ˇ

2 dt.

5We therefore adopt a synchronous coupling point of view where we explicitly build a discretized trajectory
with the same Brownian motion as the one used with the continuous solution.
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We conclude that:

E| pXγ
tk0 ,tN

´ pXtk0 ,tN
|2 ď

1

tN ´ tk0

N
ÿ

j“k0

ż tj`1

tj

E
ˇ

ˇX̄tj ´Xt

ˇ

ˇ

2 dt. (39)

We are led to study E
ˇ

ˇX̄tj ´Xt

ˇ

ˇ

2 when t P rtj , tj`1s. We first decompose this last quantity as

E
ˇ

ˇX̄tj ´Xt

ˇ

ˇ

2
“ E

ˇ

ˇX̄tj ´Xtj `Xtj ´Xt

ˇ

ˇ

2
ď 2E

ˇ

ˇX̄tj ´Xtj

ˇ

ˇ

2
` 2E

ˇ

ˇXtj ´Xt

ˇ

ˇ

2
.

‚ We let Υj :“ E|X̄tj ´Xtj |
2, apply Proposition 5.2 and Proposition 5.3 and obtain that:

Υj`1 ď Υje
´ρ

γj`1
4 `

L2d

ρ
loomoon

:“κ1

γ2
j`1 `

4L2

ρ

„

E|bpX̄0q|
2 ` d

L2

ρ2



loooooooooooooomoooooooooooooon

:“κ2

γ3
j`1,

A direct recursion yields:

@j ě k0 Υj ď Υk0

j
ź

i“k0`1

e´
ρ
4 γi ` κ1

j
ÿ

i“k0`1

γ2
i

j
ź

`“i`1

e´
ρ
4 γ` ` κ2

j
ÿ

i“k0`1

γ3
i

j
ź

`“i`1

e´
ρ
4 γ`

“ Υk0e
´
ρ
4 ptj´tk0 q `

j
ÿ

i“k0`1

rκ1γ
2
i ` κ2γ

3
i se

´
ρ
4 ptj´tiq.

We then use Lemmas 4.1, 4.2 and 4.3 of the supplementary document [GPP20, Section 4] and write
that some universal constants pc1, c2q exist such that

@j ě k0 Υj ď e´
ρ
4 ptj´tk0 q ` c1κ1γj ` c2κ2γ

2
j . (40)

‚ To study the second term, we observe that:

@t P rtj , tj`1s Xt ´Xtj “

ż t

tj

bpXtqds`
?

2pBt ´Btj q,

which implies that

E|Xt ´Xtj |
2 ď 2E

ˇ

ˇ

ˇ

ˇ

ˇ

ż t

tj

bpXsqds

ˇ

ˇ

ˇ

ˇ

ˇ

2

` 4Ep|Bt ´Btj |2q.

The triangle inequality and the Brownian increment Bt ´Btj yield:

E|Xt ´Xtj |
2 ď 2pt´ tjq

2 sup
sě0

E|bpXsq|
2 ` 4dpt´ tjq.

Again, Proposition 5.3 leads to

@t P rtj , tj`1s E|Xt ´Xtj |
2 ď κ3pt´ tjq ` κ4pt´ tjq

2, (41)

where

κ3 “ 4d and κ4 “
4L2

ρ

„

ĂW pxq `
dL2

2ρ2



.

We now use (40) and (41) in (39) and obtain that

E| pXγ
tk0 ,tN

´ pXtk0 ,tN
|2 ď

2

tN ´ tk0

k
ÿ

j“k0

ż tj`1

tj

“

Υj ` E|Xt ´Xtj |
2dt

‰

ď
2

tN ´ tk0

k
ÿ

j“k0

e´
ρ
4 ptj´tk0 qγj `

´

c1κ1 `
κ3

2

¯

γ2
j `

´

c2κ2 `
κ4

3

¯

γ3
j
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Finally, Lemma 4.4 of the supplementary document [GPP20] implies

E| pXγ
tk0 ,tN

´ pXtk0 ,tN
|2 ď

4

ρptN ´ tk0q
`
c1κ1 ` κ3{2` 2ρ

tN ´ tk0

N
ÿ

j“k0

γ2
j `

c2κ2 ` κ4

tN ´ tk0

N
ÿ

j“k0

γ3
j .

Using that ρ ď L, we then observe that

c1κ1 ` κ3{2` 2ρ Àid
L2

ρ
d and c2κ2 ` κ4 Àid

L4

ρ3
d.

This concludes the proof of iq. iiq is a straightforward computation.

Proof of Theorem 5.1, iiiq. First, observe that our tuning of the parameters in our statement yields:

E| pXγ
tk0 ,tN

´ pXtk0 ,tN
|2 Àid ε

2.

Thus, it remains to prove that E| pXtk0 ,tN
´ πnpIdq|

2 Àid ε
2 (for an appropriate choice of k0). To this

end, let us recall that, under pSCρq, a classical Gronwall-type argument leads to:

@px, y, tq P Rd ˆ Rd ˆ R` : |Xx
t ´X

y
t |

2 ď |x´ y|2e´2ρt a.s. (42)

@px, tq P Rd ˆ R` : Exr|Xt ´ x
‹|2s ď |x´ x‹|2e´2ρt `

d

2ρ
. (43)

Then, setting f “ Id ´ πnpIdq, we remark that for some given 0 ď t ă T ,

Ex

¨

˝

ˇ

ˇ

ˇ

ˇ

ˇ

1

T ´ t

ż T

t

Xsds´ πnpIdq

ˇ

ˇ

ˇ

ˇ

ˇ

2
˛

‚“
2

pT ´ tq2

ż T

t

ż T

u

ExrfpXsqfpXuqsdsdu. (44)

By the Markov property, ExrfpXsqfpXuqs “ ExrΨs´upXuqfpXuqs where for pz, vq P RdˆR`, Ψvpzq “
EzrfpXvqs “ EzrXvs ´ πnpIdq. By (42), one deduces that

|Ψvpzq| ď

ż

Rd
Er|Xz

t ´X
y
t |sπnpdyq ď

ż

Rd
|z ´ y|πnpdyqe´ρv ď

ˆ

|z ´ x‹| `

ż

Rd
|y ´ x‹|πnpdyqe´ρv

˙

.

Thus,

ExrΨ2
s´upXuqs

1
2 ď e´ρps´uq

˜

ExrXu ´ x
‹|2s

1
2 `

ˆ
ż

Rd
|y ´ x‹|2πnpdyq

˙
1
2

¸

ď 2e´ρps´uq sup
tě0

ExrXt ´ x
‹|2s

1
2 ď 2e´ρps´uq

˜

|x´ x‹| `

d

d

2ρ

¸

,

where in the last line, we used (43) and the convergence of LpXx
t q ÝÑ πn , which implies that:

ˆ
ż

Rd
|y ´ x‹|2πnpdyq

˙
1
2

ď sup
tě0

ExrXt ´ x
‹|2s

1
2 .

On the other hand, using again (43), we have:

Exrf2pXuqs
1
2 ď ExrXu ´ x

‹|2s
1
2 `

ˆ
ż

Rd
|y ´ x‹|2πnpdyq

˙
1
2

ď 2|x´ x‹| `

d

d

2ρ
.

From what precedes and the Cauchy-Schwarz inequality, we deduce that:

|ExrfpXsqfpXuqs ď ExrΨ
2
s´upXuqs

1
2Exrf2pXuqs

1
2 ď ce´ρps´uq

ˆ

|x´ x‹|2 `
d

ρ

˙

,
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with c “ 8p|x´ x‹|2 ` d{ρq. Hence, plugging this inequality into (44), we obtain that:

Ex

¨

˝

ˇ

ˇ

ˇ

ˇ

ˇ

1

T ´ t

ż T

t

Xsds´ πnpIdq

ˇ

ˇ

ˇ

ˇ

ˇ

2
˛

‚ď
2c

pT ´ tq2

ż T

t

ż T

u

e´ρps´uqdsdu ď
2ce´ρt

ρ2pT ´ tq2
.

Setting t “ γk0 and T “ Nγ, our parameters pN, γq ensures E| pXtk0 ,tN
´ πnpIdq|

2 ď ε2 as soon as:
?

2ce´
ρ
2 k0γ

ρ
ď εðù k0 ě

2

ργ
log

ˆ

?
2c

ρ
ε´1

˙

.

�

5.2. Bayesian learning with discrete LMC - strongly convex case - Theorem 2.8.

Proof of Theorem 2.8. We shall apply the above results in our Bayesian framework. Given the set of
n observations pξ1, . . . , ξnq, we have:

Wnpξ
n, xq “

n
ÿ

i“1

Upξi, xq.

Assuming that Upξ, .q satisfies pALq, the triangle inequality shows that Wnpξ
n, .q satisfies pAnLq

regarless the value of ξn. In the meantime, assuming that Upξ, .q satisfies pSCρq yields Wnpξ
n, .q is

nρ-strongly convex i.e satisfies pSCnρq.
If we denote by N0 “ N ´ k0 the number of iterates used for the Cesaro averaging all along our

discrete trajectory used with a constant step-size γ ą 0, we shall remark that pXtk0 ,tN
“ pθn,γk0,γN .

We apply Theorems 2.3, 2.5, and 5.1: the symbol Er.s refers to the expectation with respect to the
sampling and to the discretization procedures. We obtain that:

E
”

| pXγ
tk0 ,tN

´ θ‹|2
ı

Àid E
”

| pXγ
tk0 ,tN

´ pXtk0 ,tN
|2
ı

`E
”

|pθn,γk0,γN ´ θ̃n|
2
ı

` Eθ‹
”

|θ̃n ´ θ
‹|2

ı

Àid

ˆ

1

rnρsN0γ
`
rnLs2d

rnρs
γ `

rnLs4d

rnρs3
γ2

˙

` Eθ‹
˜

a

Vn,4
N0γλ1,n

`
a

Vn,4Jµ,0e´λ1,nk0γ

¸

` ε2
n

Àid

ˆ

1

nρN0γ
`
L2

ρ
ndγ `

L4

ρ3
ndγ2

˙

`

a

Eθ‹rVn,4s
nρN0γ

` dd{p2βqe´nρk0γ
b

Eθ‹rVn,4s ` ε2
n,

where the last line comes from the Cauchy-Schwarz inequality, Proposition 3.3 of the supplementary
document [GPP20] and the Bakry-Emery criterion [BE83] that entails λ1,n ě nρ. We then use
Proposition 3.1 of the supplementary document [GPP20] and obtain that:

E
”

| pXγ
tk0 ,tN

´ θ‹|2
ı

Àid

ˆ

1

nρN0γ
`
L2

ρ
ndγ `

L4

ρ3
ndγ2

˙

`
ε2
n

ρnN0γ
` dd{p2βqε2

ne
´ρnk0γ ` ε2

n.

To obtain an ε2
n M.S.E with ε2

n “

´

d logpnq
n

¯1{αc
ÝÑ 0 as n ÝÑ `8, we are led to choose:

L2

ρ
ndγ ď ε2

n ðù γ “
ρ

L2
Oid

ˆ

ε2
n

nd

˙

.

We then observe the consequence of this choice on k0 and N0 that need to satisfy:

k0 ě
d logpdq

2βρnγ
“

ˆ

L

ρ

˙2

Oid
`

ε´2
n d2 logpdq

˘

and N0 ě
ε´2
n

nγρ
“

ˆ

L

ρ

˙2

Oid
`

dε´4
n

˘

.

�
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6. Discretization of the Langevin procedure - Weakly convex case

The weakly convex (i.e. not uniformly strongly convex) case is tackled with a completely different
approach. Actually, in the weakly convex case, a series of properties disappears. For instance, one
can not easily control the pathwise distance between the process and its discretization. The problem
is then significantly harder and we choose here to make use of the inversion of the Poisson equation,
which leads to a relatively tractable formulation of the error between the discretized Cesaro average
and the invariant distribution (applied to the identity function). In particular, this “Poisson equation
approach” is in the continuity of [LP02, HMP20]) and has a long-standing history in the study of central
limit theorem for Markov chains. We refer to [Mey71, Nev76, Rev84, GM96] for seminal contributions
on additive functionals of Markov chains. We first stay at an informal level in this paragraph for the
sake of readability. We sketch the general idea behind the use of this equation with an Euler scheme.

Again, we first state some general results with a diffusion process pXtqtě0 solution of:

dXt “ ´∇W pXtqdt`
?

2dBt. (45)

6.1. How to use the Poisson equation f ´ πpfq “ Lg? This approach is based on the inversion
of the operator L of the diffusion. For a given function f , we recall that the solution of the Poisson
equation is the function g such that πpgq “ 0 and that satisfies:

f ´ πpfq “ Lg,

where π denotes the invariant distribution of the diffusion (see below for background on existence and
uniqueness of the solution). We consider g the solution of the Poisson equation.
‚ For such a solution, a first important ingredient is based on the following remark: if pXtqtě0 is a

Markov process with generator L and g belongs to the (extended) domain, then the Ito formula yields:

gpXtq “ gpX0q `

ż t

0

LgpXsqds`Mg
t ,

so that
ż t

0

fpXsq ´ πpfqds “
ż t

0

LgpXsqds´ pgpXtq ´ gpX0qq (46)

is a local martingale (and certainly a true martingale under appropriate conditions). Thus, the control
of the distance between p 1

t

şt

0
fpξsqqtě0 and πpfq can be tackled from a martingale point of view.

‚ The second main interest of this approach is the possibility to specify that our estimator involves
f “ Id, which is an important ingredient of the approximation of πpfq. Such a precision is untractable
when we handle distances between probability distributions.

We first state that the Poisson equation is well-posed in our setting and recall a classical formulation
of this solution. The proof is postponed to the supplementary document [GPP20, Section 4.2.4]. Note
that this result is only stated under the assumptions of our main theorems but may be certainly
extended to a more general setting (see [CCG12, Corollary 3.2] for a more general result).

Proposition 6.1 (Poisson equation). Assume pHc1
q and pHc2,r

q and suppose that W is C3 with
bounded third derivatives. Then, Equation (45) admits a unique invariant distribution and for any C2-
function f with bounded derivatives, the problem Lg “ f´πpfq is well-posed on the set of C2-functions
such that πpgq “ 0 and the unique solution is given by:

gpxq “

ż `8

0

rπpfq ´ Psfpxqsds.

Note that in what follows, we will solve this equation d times for a multivariate function f “
pf1, . . . , fdq. More precisely we shall need to consider f “ Id.
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6.2. Poisson equation and discretization. In the discretized case, the aim is then to mimick the
martingale property of Equation (46) but some additional error terms appear with the discretization
approximation. Such ideas have been strongly studied in [LP02, HMP20] but since the solution to the
Poisson equation is not explicit (in general), the previous works have usually made ad hoc assumptions
on the function g and its derivatives. For our purpose, we identify the key properties satisfied by the
solution when f “ Id in terms of the dimensional dependence.

Theorem 6.2. Assume pHc1
q and pHc2,r

q with r P r0, 1s. Let X̄γ denote the Euler scheme with con-
stant step-size γ initialized at x0. Assume that γ ď γ0 :“ 1

8 ppdLq
´1 ^ 1

8 q. Assume that W px0q Àid bd.

iq Then for any e ą 0,

Ex0

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

1

N

N´1
ÿ

k“0

X̄γ
tk
´ πpIdq

ˇ

ˇ

ˇ

ˇ

ˇ

2
fi

fl Àid c
2`e
2 db2r`e

d

ˆ

1

tN
` L2

`

c1γ
2bd ` γd

˘

˙

` c1`e
2

db1`3r`e
d

t2N
,

where in the above inequality , the constant C hidden in “Àid” depends only on e.

iiq If furthermore, W is C3 with }D3W }8 ă `8 (defined by (21)), then:

Ex0

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

1

N

N´1
ÿ

k“0

X̄γ
tk
´ πpIdq

ˇ

ˇ

ˇ

ˇ

ˇ

2
fi

fl Àid c
2`e
2 db2r`e

d

´

1
tN
` γ2pc1L

2bd ` }D
3W }28d

4b2r`e
d q

¯

`c1`e
2

db1`3r`e
d

t2N
` c

2p1`eq
2

L2d2b2r`e
d γ

tN
.

Proof. We observe that pX̄tkqkě1, computed through the recursion

X̄tk “ ´γk∇W pX̄tk´1
q `

a

2γkζk,

where pζkqkě0 is an i.i.d. sequence of standard d-dimensional Gaussian random variables, is a sequence
of discrete time observations of the continuous time process pX̄tqtě0 defined by:

@t P rtk, tk`1s dX̄t “ ´∇W pX̄tkqdt`
?

2dBt,

with ?γkζk “ Btk ´Btk´1
.

Considering a multivariate function g “ pg1, . . . , gdq : Rd Ñ Rd, we denote by Dg the multidimen-
sional gradient, which corresponds to the matrix Dg “ r∇g1, . . . ,∇gds. Similarly, ∆g refers to the
vector built with p∆g1, . . . ,∆gdq. We then observe that:

gpX̄tq “ gpxq `

ż t

0

L̄gpX̄s, X̄sqds`Mpgq
t ,

where s is defined in (11), L̄ is given by:

L̄gpx, xq “ ´Dgpxq∇W pxq `∆gpxq, (47)

andMpgq is the Rd-valued local martingale defined by:

Mpgq
t “

?
2

ż t

0

DgpX̄sqdBs. (48)

Similarly, the definition of L shall be extended to multivariate functions by

Lgpxq “ pLg1pxq, . . .Lgdpxqq “ ´Dgpxq∇W pxq `∆gpxq. (49)

The plan of the proof is the same for iq and iiq and is decomposed into three steps. Steps 1 and
2 are common whereas the last one is treated separately. Before going into the proof of these three
steps, we first state some crucial bounds for the solution of the Poisson equation associated to f “ Id.
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The proof of this proposition is postponed to [GPP20, Section 4.2.4]. We also use the sharp analysis
(in terms of the effect of the dimension d) of the exponential moments given in [GPP20, Lemma 4.6].

Proposition 6.3. Assume pHc1
q and pHc2,r

q with c1 ą 0, c2 ą 0 and r P r0, 1s, and suppose that W
is C3 with bounded third derivatives. Let g denote the solution of the Poisson equation with f “ Id.
Then, g is twice-differentiable and for every e P p0, 1q, a constant ce exists (which only depends on e
and not on d), such that for any x:

i´ aq }Dgpxq}2F ď ced
´

1` c
2p1`eq
2

´

W 2rp1`eqpxq ` b
2rp1`eq
d

¯¯

.

i´ bq If W px0q Àid bd, suptě0 Ex0
r}DgpX̄tq}

2
F s ď cec

2p1`eq
2 db

2rp1`eq
d .

ii´ aq |gpxq ´ gpx‹q| ď ce
?
d
´

c
1
2`e
2 W

1`3r
2 `repxq ` b

rp1`eq
d W

1`r
2 pxq

¯

.

ii´ bq If W px0q Àid bd, then suptě0 Ex0
r|gpX̄tq ´ gpx0q|

2s ď cec
1`e
2 db1`3r`e

d .

iii´ aq }D2gpxq}2F :“
ř

i,j,k |D
2
jkgipxq|

2 ď ced
3}D3W }28c

2p1`eq
2

´

W 4rp1`eqpxq ` b
4rp1`eq
d

¯

.

iii´ bq If W px0q Àid bd, suptě0 Ex0
r}D2gpX̄tq}

4
F s

1
2 ď ced

3}D3W }28c
2p1`eq
2 b

4rp1`eq
d .

Follow-up of the proof of Theorem 6.2. Step 1: Decomposition of πN pfq ´ πpfq.We observe that @N ě

1:

πN pfq ´ πpfq :“
1

tN

N
ÿ

k“1

γkfpX̄tk´1
q ´ πpfq “

1

tN

N
ÿ

k“1

ż tk

tk´1

fpX̄sqds´ πpfq

“
1

tN

ż tN

0

rfpX̄sq ´ πpfqsds

“
1

tN

ż tN

0

rfpX̄sq ´ πpfqsds`
1

tN

ż tN

0

rfpX̄sq ´ fpX̄sqsds

Now, we may use the Poisson equation f ´ πpfq “ Lg with f “ Id and deduce that:

πN pIdq ´ πpIdq “
1

tN

ż tN

0

LgpX̄sqds`
1

tN

ż tN

0

rX̄s ´ X̄ssds

“
1

tN

ż tN

0

L̄gpX̄s, X̄sqds`
1

tN

ż tN

0

rLgpX̄sq ´ L̄gpX̄s, X̄sqsds

`
1

tN

ż tN

0

rX̄s ´ X̄ssds.

To handle the first term, we use the Ito formula to obtain:

gpX̄tN q “ gpx0q `

ż tN

0

L̄gpX̄s, X̄sqds`Mpgq
tN with Mpgq

tN “ 2

ż tN

0

DgpX̄sqdBs.

By (47), we remark that

Lgpxq ´ L̄gpx, xq “ Dgpxqr∇W pxq ´∇W pxqs.
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We then obtain that:

πN pIdq ´ πpIdq “
gpX̄tN q ´ gpx0q

tN
´
Mpgq

tN

tN
`

1

tN

ż tN

0

DgpX̄sqr∇W pX̄sq ´∇W pX̄sqsds

`
1

tN

ż tN

0

rX̄s ´ X̄ssds

“

:“A
p0q
tN

hkkkkkkkkkikkkkkkkkkj

gpX̄tN q ´ gpx0q

tN
´

:“A
p1q
tN

hkkikkj

Mpgq
tN

tN
`

:“A
p2q
tN

hkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkj

1

tN

ż tN

0

DgpX̄sqr∇W pX̄sq ´∇W pX̄sqsds

`
1

tN

ż tN

0

rX̄s ´ X̄ssds
loooooooooooomoooooooooooon

:“A
p3q
tN

. (50)

The rest of the proof consists in studying the mean-squared error related to each term of the above
righ-hand side and to deduce the result the upper-bound for E|πN pfq ´ πpfq|2.

Step 2: Mean squared error related to Ap0qtN , Ap1qtN and Ap3qtN :

‚ By Proposition 6.3,

Ex0

ˇ

ˇ

ˇ
A
p0q
tN

ˇ

ˇ

ˇ

2

“ Ex0

ˇ

ˇ

ˇ

ˇ

gpX̄tN q ´ gpX̄0q

tN

ˇ

ˇ

ˇ

ˇ

2

ď cec
1`e
2

db1`3r`e
d

t2N
.

‚ Let us consider the martingale term A
p1q
tN :

Ex0
r|Mpgq

tN |
2s “ 2

ż tN

0

E}DgpX̄sq}
2
Fds,

where }.}F refers to the Frobenius norm. Then, Proposition 6.3 implies:

Ex0

ˇ

ˇ

ˇ
A
p1q
tN

ˇ

ˇ

ˇ

2

Àid cec
2p1`eq
2

db
2rp1`eq
d

tN
.

‚ Let us now consider Ap3qtN . On rtk´1, tkq:

X̄s ´ X̄s “ X̄s ´ X̄tk´1
“ ´ps´ tk´1q∇W pX̄tk´1

q `
?

2
`

Bs ´Btk´1

˘

,

so that
ż tk

tk´1

pX̄s ´ X̄tk´1
qds “ ´

γ2

2
∇W pX̄tk´1

q `
?

2

ż tk

tk´1

pBs ´Btk´1
qds

loooooooooooomoooooooooooon

:“∆Nk

.

On the first hand, using that p∆Nkqkě1 is a sequence of independent and centered variables:

Ex0

«

ˆ

1

tN

ż tN

0

pBs ´Bsqds
˙2

ff

“
1

t2N

N
ÿ

k“1

Ex0
|∆Nk|

2 “
1

t2N

N
ÿ

k“1

Ex0

ˇ

ˇ

ˇ

ˇ

ˇ

ż tk

tk´1

pBs ´Btk´1
qds

ˇ

ˇ

ˇ

ˇ

ˇ

2

“
N

t2N
Ex0

ˇ

ˇ

ˇ

ˇ

ż γ

0

Bsds
ˇ

ˇ

ˇ

ˇ

2

“
1

Nγ2
Ex0

ˇ

ˇ

ˇ

ˇ

ż γ

0

pγ ´ sqdBs

ˇ

ˇ

ˇ

ˇ

2

“
dγ

3N
.

On the other hand, the Jensen inequality yields:
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Ex0

ˇ

ˇ

ˇ

ˇ

ˇ

1

tN

N
ÿ

k“1

γ2

2
∇W pX̄tk´1

q

ˇ

ˇ

ˇ

ˇ

ˇ

2

“ Ex0

ˇ

ˇ

ˇ

ˇ

ˇ

1

Nγ

N
ÿ

k“1

γ
´γ

2
∇W pX̄tk´1

q

¯

ˇ

ˇ

ˇ

ˇ

ˇ

2

ď
1

Nγ

N
ÿ

k“1

γEx0

„

γ2

4

ˇ

ˇ∇W pX̄tk´1
q
ˇ

ˇ

2


ď
c1γ

2

4
sup
kě1

Ex0
W pX̄tk´1

q Àid γ
2pW px0q ` bdq,

where in the last inequality, we used Proposition 4.7 of the supplementary document [GPP20]. Using
that W px0q Àid bd, we deduce from what precedes that:

Ex0

ˇ

ˇ

ˇ
A
p3q
tN

ˇ

ˇ

ˇ

2

Àid
dγ

3N
` γ2bd.

Step 3: Mean squared error related to Ap2qtN The study of this term is isolated not only because its study
is more involved, but also because this term differentiates the bound of iq and iiq.
We separate the drift and the diffusion components and define ∆ss “

?
2pBs ´Bsq. We have:

A
p2q
tN “´

:“A
p2,1q
tN

hkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkj

1

tN

ż tN

0

DgpX̄sqr∇W pX̄sq ´∇W pX̄s `∆ssqsds

´
1

tN

ż tN

0

DgpX̄sqr∇W pX̄s `∆ssq ´∇W pX̄sqsds
looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon

:“A
p2,2q
tN

.

Since |∇W pX̄sq ´∇W pX̄s `∆ssq| ď L|s´ s|.|∇W pX̄sq|,

Ex0r}A
p2,1q
tN }2s ď

L2

tN

ż tN

0

ps´ sq2Ex0r}DgpX̄sq}
2sEx0r|∇W pX̄sq|

2sds.

Using pHc1
q, pHc2,r

q, Proposition 4.7 of the supplementary document [GPP20], Proposition 6.3 and
W px0q Àid bd, we have:

Ex0
r}DgpX̄sq}

2sEx0
r|∇W pX̄sq|

2s Àid cec
2p1`eq
2 db

2rp1`eq
d c1bd,

so that:
Ex0

r|A
p2,1q
tN |2s Àid ceL

2γ2c1c
2p1`eq
2 db

1`2rp1`eq
d .

We finally separate the study of Ap2,2qtN into two cases, respectively for iq and iiq.

Step 4a: End of Proof of Theorem 6.2 iq: The Cauchy-Schwarz inequality yields

Ex0
r|A

p2,2q
tN |2s ď

L2

tN

ż tN

0

Ex0
r}DgpX̄sq}

2sEx0
r|∆ss|

2sds.

Again Proposition 6.3 implies that:

Ex0r|A
p2,2q
tN |2s Àid

L2

tN

ż tN

0

cec
2p1`eq
2 db

2rp1`eq
d ˆ dps´ sqds Àid L2cec

2p1`eq
2 d2γ.

The result follows by collecting the bounds obtained for Ap0qtN , Ap1qtN , Ap2,1qtN , Ap2,2qtN and Ap3qtN .
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Step 4b: End of Proof of Theorem 6.2 iiq: It is possible to exploit the centering of ∆ss. We decompose
into two parts: we write

A
p2,2q
tN “

:“ 1©
hkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkj

1

tN

ż tN

0

pDgpX̄sq ´DgpX̃sqqr∇W pX̄s `∆ssq ´∇W pX̄sqsds

`
1

tN

ż tN

0

DgpX̃sqr∇W pX̄s `∆ssq ´∇W pX̄sqsds,
loooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooon

:“ 2©

where X̃s “ X̄s ´ ps´ sq∇W pX̄sq. For the first term, we use the Jensen inequality so that:

Ex0r| 1©|2s ď
1

tN

ż tN

0

Er|Gsδs|2sds,

where Gs is the dˆ d-matrix Gs :“ DgpX̄sq ´DgpX̄sq and δs :“ ∇W pX̄s `∆ssq ´∇W pX̄sqs. Using
|Ax| ď }A}F |x| and since ∇W is L-Lispchitz, we obtain:

Ex0
r|Gsδs|

2s ď L2Ex0
r}Gs}

2
F |∆ss|

2s ď L2
ÿ

i,j

Ex0
r|Gi,js |

2|∆ss|
2s. (51)

Setting X̃pηqs “ X̄s ´ ps´ sq∇W pX̄sq ` η∆ss, we deduce from the Taylor formula that

Gi,js “

ż 1

0

x∇pDjgiqpX̃
pηq
s q,∆ssydη.

Again, the Jensen and Cauchy-Schwarz inequalities lead to:

ÿ

i,j

Ex0
r|Gi,js |

2|∆ss|
2s “

ÿ

i,j

Ex0

«

ˇ

ˇ

ˇ

ˇ

ż 1

0

x∇pDjgiqpX̃
pηq
s q,∆ssydη

ˇ

ˇ

ˇ

ˇ

2

|∆ss|
2

ff

ď 2Ex0

«

|∆ss|
4

˜

ż 1

0

ÿ

i,j

|∇pDjgiqpX̃
pηq
s q|2dη

¸ff

“ 2

ż 1

0

Ex0

”

|∆ss|
4~D2gpX̃pηqs q~2

ı

dη,

where

~D2gpxq~2 :“
ÿ

i,j,k

|D2
j,kgipxq|

2 “

d
ÿ

i“1

}D2gipxq}
2
F .

Thus, by Cauchy-Schwarz inequality,

Ex0
r|Gsδs|

2s ď L2Er|∆ss|
8s

1
2 sup
θPr0,1s

Er~D2gpX̃pθqs q~4s
1
2

Àid L
2ps´ sq2d2 sup

θPr0,1s

Er~D2gpX̃pηqs q~4s
1
2 .

Àid L
2ceps´ sq

2d5}∇3W }28c
2p1`eq
2

˜

sup
ηPr0,1s

ErW 4rp1`eqpX̃pηqs qs ` b
4rp1`eq
d

¸

,

using Lemma 4.8 of the supplementary document [GPP20]. Then, by a slight adaptation of the proof
of Lemma 4.6 of the supplementary document [GPP20], we get that:

sup
tě0,ηPr0,1s

Ex0
re

1
8W pX̃

pηq
t qs Àid e

1
8W px0q ` bd.



36 SÉBASTIEN GADAT, FABIEN PANLOUP AND CLÉMENT PELLEGRINI

Following the proof of Proposition 4.7 and using the fact that W px0q Àid bd, we get:

sup
tě0,ηPr0,1s

Ex0
rW 4rp1`eqpX̃

pηq
t qs Àid ceb

4rp1`eq
d .

It follows that:
Er| 1©|2s Àid ceL2γ2d5}∇3W }28c

2p1`eq
2 b

4rp1`eq
d . (52)

Let us finally consider 2©. Using the Taylor formula, we obtain that:

DgpX̃sqr∇W pX̄s `∆ssq ´∇W pX̄sqs “ DgpX̃sq∇2W pX̄sq∆ss `

ż 1

0

∆T
ss∇3W pX̄s ` η∆ssq∆ssdη.

Using that the first term is a martingale, we obtain that:

Er| 2©|2s Àid
1

t2N

ż tN

0

Er}DgpX̃sq∇2W pX̄sq}
2
F sps´ sqds

`
1

tN

ż tN

0

}∇3W }28dEr}DgpX̃sq}
2
F |∆ss|

4sds. (53)

The Frobenius norm being sub-multiplicative and }∇2W }F ď
?
dL, we have:

}DgpX̃sq∇2W pX̄sq}
2
F ď dL2}DgpX̃sq}

2.

Once again, by a slight adaptation of Lemma 4.6 of the supplementary document [GPP20], we get the
same bounds for Er}DgpX̃sq}

2s as for Er}DgpX̄sq}
2s in Proposition 6.3 so that:

1

t2N

ż tN

0

Er}DgpX̃sq∇2W pX̄sq}
2
F sps´ sqds Àid cec

2p1`eq
2 d2b

2rp1`eq
d L2 1

t2N

ż tN

0

ps´ sqds

Àid cec
2p1`eq
2 d2b

2rp1`eq
d L2 γ

tN
. (54)

Finally, for (53), the Cauchy-Schwarz inequality yields:

|(53)| Àid }∇3W }28d
3 1

tN

ż tN

0

ps´ sq2Er}DgpX̃sq}
4
F s

1
2 ds.

Once again, a slight adaptation of the proof of Proposition 6.3piiq yields the same inequality for
supsě0 Er}DgpX̃sq}

4
F s

1
2 as the one of supsě0 Er}DgpX̄sq}

2s:

|(53)| Àid cec
2p1`eq
2 }∇3W }28d

5b
2rp1`eq
d γ2.

Thus, by the above inequality, (54) and (52), we conclude that:

Er|Ap2,2qtN |2s Àid cec
2p1`eq
2 d2b

2rp1`eq
d

ˆ

}∇3W }28d
3b

2rp1`eq
d γ2 `

L2γ

tN

˙

.

The result follows by collecting the previous bounds and the new one established for Ap2,2qtN . �

We conclude this section by a result related to the complexity of our algorithm. By complexity, we
mean here the number of iterations of the scheme which is necessary to obtain a given L2-error. We
thus denote by Nη the number of iterations which is necessary to guarantee that

Ex0

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

1

Nε

Nε
ÿ

k“1

X̄γ
kγ ´ πpIdq

ˇ

ˇ

ˇ

ˇ

ˇ

2
fi

fl Àid ε
2. (55)

Corollary 6.4. Let the assumptions of Theorem 6.2 be in force and assume that bd Àid d. Let ε ą 0.
There exists a constant c depending only on e, c1, c2, L and }∇3W }8 such that

piq If γ “ cε2d´2´2rp1`eq, then Nε “ ε´4d3`4rp1`eq, then Condition (55) is satisfied.
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piiq If γ “ cεd´
5
2´2r´e, then Nε “ ε´3d

7
2`4r`2e, then Condition (55) is satisfied.

Remark 7. The above results may be considered as very bad with respect to the existing literature.
However, we have to recall that this result is really obtained in the non-uniformly convex case, which
is significantly harder than the uniformly convex one. The second remark is that, as mentioned in
Section 2.5.4, the literature using a “standard” Monte-Carlo approach (i.e. based on the average of M
paths of a given discretization scheme and not on a pathwise average) usually calls complexity, the
number of iterations needed for the simulation of one path. In other words, the Monte-Carlo cost is
not taken into account. Hence, each result of such literature needs a multiplication by ε´2σ2

d (where
σ2
d denotes the variance of the considered function) to really be compared with our results. Actually,

here, we consider occupation measures so that, we only compute one path. The number of iterations
is thus exactly the complexity (when the complexity unit is one iteration of the scheme).

Proof. piq Owing to the bound obtained in Theorem 6.2piq, we remark that in order to guarantee
Condition (55) (up to parameters c1, c2, L and e), we need that:

d1`2r`e

Nεγ
ď ε2 and γd2`2r`e ď ε2,

which involves that
Nε ě ε´2γ´1d1`2r`e and γ´1 ě d2`2rp1`eqε´2.

Then, one checks that if we set γ “ cε2d´2´2rp1`eq, then Nε “ ε´4d3`4rp1`eq, the other terms are
controlled by ε2.

piiq In this case, we deduce from a careful inspection of each term of the right-hand member of Theorem
6.2piiq that Condition (55) is satisfied if (up to a constant depending on c1, c2, L, e and }∇3W }8)

d1`2r`e

Nεγ
ď ε2 and γd

5
2`2r`e ď ε,

which involves that
Nε ě ε´2γ´1d1`2r`e and γ´1 ě d

5
2`2r`eε´1.

The result follows by setting γ “ d´
5
2´2r´eε and by plugging it in the first inequality. �

6.3. Bayesian learning with discrete LMC - weakly convex case - Theorem 2.9.

Proof of Theorem 2.9-iq. We know that for any ξ, Upξ, .q satifies pALq. It implies that Wn is nL-
smooth (see Section 5.2). Since Upξ, .q satisfies pHc1

q, a direct computation shows that Wn satisfies
pHnc1q. In the meantime, Assumption pHc2,r

q on each Upξ, .q implies that:

λp∇2Wnq “ λ

˜

n
ÿ

i“1

∇2Upξi, .q

¸

ě

n
ÿ

i“1

λp∇2Upξi, .qq

ě

n
ÿ

i“1

c´1
2 Upξi, .q

´r “ n

˜

1

n

n
ÿ

i“1

c´1
2 Upξi, .q

´r

¸

ě tc2n
´p1`rqu´1W´r

n ,

where we applied the Jensen inequality to the convex function u ÞÑ u´r. Therefore, Wn satisfies
pHqc2n´p1`rq,r. Finally, we observe that bpnqd associated to Wn is upper bounded by b

pnq
d Àid nbd. By
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Theorem 6.2-iq and Theorem 2.3, we deduce that for any e ą 0:

E
”

| pXγ
tk0 ,tN

´ θ‹|2
ı

ď 2E
”

| pXγ
tk0 ,tN

´ θ̃n|
2
ı

` 2Eθ‹
”

|θ̃n ´ θ
‹|2

ı

Àid

ˆ

pn´p1`rqc2q
2`edpnbdq

2r`e

ˆ

1

Nγ
` pnLq2

`

pnc1qγ
2pnbdq ` γd

˘

˙

` pn´p1`rqc2q
1`e dpnbdq

1`3r`e

N2γ2

˙

` ε2
n.

We now study each terms separately: the first one is defined by

1© :“ pn´p1`rqc2q
2`edpnbdq

2r`e 1

Nγ
Àid

db2r`e
d

n2`reNγ
Àid

d1`2r`e

n2Nγ
,

owing to the assumption bd Àid d. The second and third terms are respectively:

2© :“ pn´p1`rqc2q
2`edpnbdq

2r`epnLq2nγ2nbd Àid L
2n2d2`2r`eγ2,

and
3© :“ pn´p1`rqc2q

2`edpnbdq
2r`epnLq2γd Àid L

2γd2`2r`e.

Finally, the last term is

4© :“ pn´p1`rqc2q
1`e dpnbdq

1`3r`e

N2γ2
Àid

n2rd2`3r`e

N2γ2
.

We first derive an appropriate choice for γ to attain an ε2
n accuracy, the constraints are brought by

2©_ 3© Àid ε
2
n, which leads to:

γ Àid
εn

Lnd1`r` e
2

^
ε2
n

L2d2`2r`e
.

Plugging this constraint on γ in 1© and 4©, we get:

1© Àid ε
2
n if N Áid

Ld2`3r` 3
2 e

nε3
n

_
L2d3`4r`2e

n2ε4
n

and

4© Àid ε
2
n if N Áid

Ln1`rd2` 5
2 r`e

ε2
n

_
L2nrd3` 7

2 r`
3
2 e

ε3
n

.

As a conclusion of the two above statements, we get

1©_ 4© Àid ε
2
n if N Áid

Ln1`rd2` 5
2 r`e

ε2
n

_
L2nrd3` 7

2 r`
3
2 e

ε3
n

_
L2d3`4r`2e

n2ε4
n

,

which concludes the proof. Using that bd Àid d and r P r0, 1s, the result follows. �

Proof of Theorem 2.9-iiq. We repeat similar arguments and use Theorem 6.2-iiq: a straightforward
computation shows that:

}∇3Wn}8 Àid n}∇3Upξ, .q}8.

The bounds 1©, 2© and 4© derived above still hold. We then observe that the two other terms involved
in Theorem 6.2-iiq are respectively:

3©1 “ pn´p1`rqc2q2`edpnbdq
4r`2en2}∇3Upξ, .q}28d

4γ2 Àid d
5`4r`2en2r`eγ2,

and

5© “ pn´p1`rqc2q
2p1`eqn

2L2d2pnbdq
2r`eγ

tN
Àid L

2d2`2r`eN´1.
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We choose γ small enough to obtain an ε2
n-approximation: under the condition bd Àid d, we observe

that
2©_ 3©1 Àid ε2

n if γ Àid εn min

ˆ

1

Lnd1`r` e
2

,
1

d
5
2`2r`enr`

e
2

˙

.

The constraints on N driven by 1©, 4© and 5© then lead to (after several computations):

N Áid max

˜

Ln1`rd2` 5
2 r`e

ε3
n

,
n2r` e

2 d
7
2 p1`rq`

3
2 e

ε3
n

,
nr´2d

7
2`4r`2e

ε3
n

,
L2d2`2r`e

ε2
n

¸

.

�
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SUPPLEMENTARY MATERIALS: ON THE COST OF BAYESIAN
POSTERIOR MEAN STRATEGY FOR LOG-CONCAVE MODELS

Abstract. This article is a companion paper of [GPP20] that contains a series of (usually
technical) proofs of the main document.

1. Concentration results

In this paragraph, we provide the technical proofs related to the posterior mean concentra-
tion, stated in Section 3 of the paper [GPP20].

Proof of Proposition 2.11. We consider θ P Rd and f P L2pπθq. For any ε ą 0, a density argu-
ment proves that a fε P C8K pRd,Rq, e.g., a compactly supported and infinitely differentiable
function, exists such that πθppf ´ fεq2q ď ε2 and πθp|∇f ´∇fε|2q ď ε2.

We shall remark that if f´θε : x ÞÝÑ fεpx ` θq, then πθpfεq “ πpf´θε q. The function f´θε is
infinitely differentiable and compactly supported, we shall apply the Poincaré inequality with
the measure π:

V arπpf
´θ
ε q ď CP pπqπp|∇f´θε |2q. (1)

Now, a straigthforward change of variable yields:

V arπθpfεq “ V arπpf
´θ
ε q and πp|∇f´θε |2q “ πθp|∇fε|2q.

We then deduce from the previous equalities and from (1) that

V arπθpfεq ď CP pπqπθp|∇fε|2q. (2)

Now, we end the proof with a density argument: the Cauchy-Schwarz inequality shows that

|πθpfq ´ πθpfεq| ď
a

πθppf ´ fεq2q ď ε, |πθpf
2q ´ πθpf

2
ε q| ď 2rπθpf

2q ` πθpf
2
ε qsε.

Finally, we can prove that |V arπθpfεq´V arπθpfq| ď 5εrπθpf
2q`πθpf

2
ε qs, and in the meantime

|πθp|∇fε|2q´πθp|∇f |2q| ď ε
a

2πθp|∇f |2 ` |∇fε|2q. We use these last upper bounds in (2), we
obtain since ε may be chosen arbitrarily small, that:

V arπθpfq ď CP pπqπθp|∇f |2q,

which ends the proof of the proposition. �

Proof of Proposition 3.1. The proof is straightforward as soon as we remark that Assumption
pPIUq implies that each πθ satisfies a Poincaré inequality with constant CUP . Since f satisfies
}∇f}8 ď k and for any θ, Uθ is a convex coercive function, then Uθpxq has a linear growth for
large values of x. Hence, f P L2pπθq and we then simply apply the concentration inequality
stated in Corollary 3.2 of [BL97]. This ends the proof of the proposition. �

Date: October 2, 2020.
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Proof of Corollary 3.2. The proof of iq is a straightforward application of Proposition 3.1 of
[GPP20] with f “ Ψ, which is a 1-Lipschitz function. The proof of iiq is similar. Since Zθ “ 1
for any θ, a direct integration yields:

Eθr∇θUpξ, θqs “

ż

Rd
∇θUpξ, θqe

´Upξ,θqdξ “ ∇θ

ż

Rd
e´Upξ,θqdξ “ ∇θZθ “ 0.

We then use a union bound deduced by the triangle inequality: if Zi “ ∇θUpξi, θq, then:
#
ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

Zi

ˇ

ˇ

ˇ

ˇ

ˇ

ě δ

+

Ă

d
ď

j“1

#

1

n

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

Zji

ˇ

ˇ

ˇ

ˇ

ˇ

ě
δ
?
d

+

. (3)

We now apply Proposition 3.1 to each term in the union bound and we get that:

Pθ

˜ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

Zji

ˇ

ˇ

ˇ

ˇ

ˇ

ě
δ
?
d

¸

ď 2e
´n δ2

4dL2CU
P

^ δ

2L
?
dCU
P .

The bound being independent of j, the result follows by summing over j in (3) �

Finally, we derive the proof of the upper bounds related to the first and second type error
of the family of tests pφrnq.

Proof of Proposition 3.3. The first upper bound iq follows directly from Lemma 3.2 applied
with θ‹. For the second estimation, we consider θ such that |θ ´ θ‹| ě ra,n and we get:

"ˇ

ˇ

ˇ

ˇ

řn
i“1 Ψpξiq

n
´ Eθ‹rΨpXqs

ˇ

ˇ

ˇ

ˇ

ď
cpra,nq

2

*

“

"ˇ

ˇ

ˇ

ˇ

řn
i“1 Ψpξiq

n
´ EθrΨpXqs ` EθrΨpXqs ´ Eθ‹rΨpXqs

ˇ

ˇ

ˇ

ˇ

ď
cpra,nq

2

*

Ă

"

|EθrΨpXqs ´ Eθ‹rΨpXqs| ´
ˇ

ˇ

ˇ

ˇ

řn
i“1 Ψpξiq

n
´ EθrΨpXqs

ˇ

ˇ

ˇ

ˇ

ď
cpra,nq

2

*

Ă

"ˇ

ˇ

ˇ

ˇ

řn
i“1 Ψpξiq

n
´ EθrΨpXqs

ˇ

ˇ

ˇ

ˇ

ě cp|θ ´ θ‹|q ´
cpra,nq

2

*

Ă

"ˇ

ˇ

ˇ

ˇ

řn
i“1 ξi
n

´ EθrXs
ˇ

ˇ

ˇ

ˇ

ě
cpra,nq

2

*

.

In the previous lines, we used the triangle inequality |a ` b| ě |a| ´ |b| in the third line, the
identifiability property IW1pcq and the fact that c is an increasing map. Applying again iq,
Corollary 3.2, we obtain an upper bound of the probability of deviations uniform regarding
the condition |θ´θ‹| ě ra,n. Taking the supremum over θ, we then obtain the proof of iiq. �

2. Continuous-time Langevin

This section is devoted to the proof of Proposition 4.4 of [GPP20].
2
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Proof of Proposition 4.4. We start from Sn,t0 “
şt0
0 X

pnq
s ds and compute as follows:

Eµ
´

|Sn,t0 ´ t0
rθn|

2
¯

ď t0

ż t0

0
Eµ|Xpnqs ´ rθn|

2ds pFubini and Cauchy-Schwarz inequalityq

ď t0

ż t0

0
Eπn |Xpnqs ´ rθn|

2ds` t0
ż t0

0

´

Eµ|Xpnqs ´ rθn|
2 ´ Eπn |Xpnqs ´ rθn|

2
¯

ds

ď t20Vn,2 ` t0
ż t0

0

´

Eµ|Xpnqs ´ rθn|
2 ´ Eπn |Xpnqs ´ rθn|

2
¯

ds. (4)

In the last equality, we have used that πn is invariant, i.e. LpXpnqs |X
pnq
0 „ πnq “ πn, which

implies that Eπn |X
pnq
s ´ rθn|

2 “ Eπn |X
pnq
0 ´ rθn|

2 “ πnp|I ´ rθn|
2q “ Vn,2.

We now study the second term of the right hand side of (4). We can write that:

Eµ
´

|Xpnqs ´ rθn|
2
¯

´ Eπn
´

|Xpnqs ´ rθn|
2
¯

“

ż

|I ´ rθn|
2pθqmpnqµ,spθqdπnpθq ´ πnp|I ´ rθn|

2q

“ πn

”

|I ´ rθn|
2pmpnqµ,s ´ 1q

ı

ď

b

πnr|I ´ rθn|4s

b

πnrpm
pnq
µ,s ´ 1q2s pCauchy-Schwarz inequalityq

ď
a

Vn,4e´λ1,ns}m
pnq
µ,0 ´ 1}L2pπnq

ď
a

Vn,4e´λ1,ns
a

Jµ,0. (5)

Introducing (5) in (4), and integrating between 0 and t0, we deduce that

Eµ
´

|Sn,t0 ´ t0
rθn|

2
¯

ď t20Vn,2 ` t0
a

Vn,4
a

Jµ,0

ż t0

0
e´λ1,nsds

ď t20Vn,2 ` t0

a

Vn,4
a

Jµ,0

λ1,n
,

which yields the first part of the proposition.

The proof of the second part of the proposition is divided into three steps.
‚ Step 1: Bias/Variance decomposition of Sn,t0,t. Using the Markov property we have

Eµ
ˆ

ˇ

ˇ

ˇ
Sn,t0,t ´ pt´ t0q

rθn

ˇ

ˇ

ˇ

2
˙

“ EPt0µ

˜

ˇ

ˇ

ˇ

ˇ

ż t´t0

0
pXpnqs ´ rθnqds

ˇ

ˇ

ˇ

ˇ

2
¸

We use some computations close to the ones of [CCG12], except that we need to handle an
initialization of the process with a measure µ instead of πn. We define f : θ ÞÝÑ θ ´ rθn and
we remark that

3
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Eµ

˜

ˇ

ˇ

ˇ

ˇ

ż t

t0

pXpnqs ´ rθnqds
ˇ

ˇ

ˇ

ˇ

2
¸

“ Eµ
ˆ
ż t

t0

fpXpnqs qfpXpnqu qduds
˙

“ EPt0µ

„
ż t´t0

0

ż t´t0

0
xfpXpnqu q, fpXpnqs qyduds



,

where we apply in the last line the Markov property. The Fubini relationship yields:

Eµ

˜

ˇ

ˇ

ˇ

ˇ

ż t

t0

pXpnqs ´ rθnqds
ˇ

ˇ

ˇ

ˇ

2
¸

“ 2

ż t´t0

0

ż s

0
EPt0µ

xfpXpnqu q, fpXpnqs qyduds

“ 2

ż t´t0

0

ż s

0
EPt0µ

xfpXpnqu q, Ps´ufpX
pnq
u qyduds

“ 2

ż t´t0

0

ż t´t0´u

0
EPt0µ

xfpXpnqu q, PvfpX
pnq
u qydvdu,

by choosing v “ s´ u as a change of variable. At this stage for all v and all u, we denote by
gv and φu the functions defined by:

gvpyq “ xfpyq, Pvfpyqy and φupyq “

ż t´t0´u

0
gvpyqdv.

We then remark that:

Eµ
´ ˇ

ˇ

ˇ
Sn,t0,t ´ pt´ t0q

rθn

ˇ

ˇ

ˇ

2¯

“ 2

ż t´t0

0

ż t´t0´u

0
EPt0µ

gvpX
pnq
u qdvdu

“2

ż t´t0

0

ż t´t0´u

0
EPt0µ

pPugvqdvdu “ EPt0µ

„

2

ż t´t0

0

ż t´t0´u

0
Pugvdvdu



“EPt0µ

„

2

ż t´t0

0
Pup

ż t´t0´u

0
gvdvqdu



“ EPt0µ

„

2

ż t´t0

0
Puφudu



.

Again, let us define ψ by ψt “ 2

ż t

0
Puφudu for all t ě 0, we remark that:

Eµ
ˆ

ˇ

ˇ

ˇ
Sn,t0,t ´ pt´ t0q

rθn

ˇ

ˇ

ˇ

2
˙

“ EPt0µ
rψt´t0s .

Now, we shall use the closeness of the measure Pt0µ to the invariant distribution πn when t0 is
sufficiently large, i.e., use the closeness of mpnqµ,s to 1 for large values of s. We have:

4
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Eµ
ˆ

ˇ

ˇ

ˇ
Sn,t0,t ´ pt´ t0q

rθn

ˇ

ˇ

ˇ

2
˙

“ πnpψt´t0q ` EPt0µ
rψt´t0s ´ πnpψt´t0q

“ πnpψt´t0q `

ż

Rd
ψt´t0pyqpm

pnq
µ,t0
pyq ´ 1qdπnpyq

ď πnpψt´t0q `
“

πnpψ
2
t´t0q

‰
1
2

„
ż

Rd
pm

pnq
µ,t0
pyq ´ 1q2dπnpyq


1
2

“ πnpψt´t0q `
“

πnpψ
2
t´t0q

‰
1
2
a

Jµ,t0

ď πnpψt´t0q `
“

πnpψ
2
t´t0q

‰
1
2

b

e´2λ1,nt0Jµ,0, (6)

where in the last line we used the contraction of the L2 semi-group given by Theorem 4.3.
‚ Step 2: First moment of ψt´t0. We upper bound πnpψt´t0q using that Ln is self-adjoint:

πnpψt´t0q “ 2

ż t´t0

0

ż t´t0´u

0
πn

´

xfpXpnqu q, PvfpX
pnq
u qy

¯

dvdu

“ 2

ż t´t0

0

ż t´t0´u

0
πn

´

xfpXpnqu q, P v
2
P v

2
fpXpnqu qy

¯

dvdu

“ 2

ż t´t0

0

ż t´t0´u

0
πn

´

| P v
2
fpXpnqu q |2

¯

dvdu because L is self-adjoint in L2pπnq

“ 2

ż t´t0

0

ż t´t0´u

0
πn

´

| P v
2
fpXpnqu q |2

¯

dvdu.

In order to control the term | Pv{2fpX
pnq
u q |2, we use the convergence to equilibrium of Pv{2f

and the fact that πnpfpX
pnq
u q “ 0. More precisely, using Theorem 4.3, we obtain that:

πn

´

| Pv{2fpX
pnq
u q |2

¯

ď e´vλ1,nπnp|f |
2q “ e´vλ1,nVn,2.

Integrating this last inequality on the domain associated to pu, vq, we obtain that

πnpψt´t0q ď 4pt´ t0qVn,2Jδtxu,0
ż 1

2
pt´t0q

0
e´2λ1,nsds

ď
2pt´ t0qVn,2

λ1,n
. (7)

‚ Step 3: Second order moment of ψt´t0 . We now study πnpψ2
t´t0q, we can write that:

5



Suppl. Materials: On the cost of Bayesian posterior mean strategy for log-concave models

πnpψ
2
t´t0q “ 4

ż t´t0

0

ż t´t0

0
πn pPuφupyqPsφspyqq duds

ď 4

ż t´t0

0

ż t´t0

0

a

πnrpPuφuq2s
a

πnrpPsφsq2sduds pusing the Cauchy-Schwarz inequalityq

ď 4

ż t´t0

0

ż t´t0

0

a

πnrpPuφ2
uqs

a

πnrpPsφ2
sqsduds, (using the Jensen inequality)

“ 4

ż t´t0

0

ż t´t0

0

a

πnpφ2
uq
a

πnpφ2
sqduds (because πn is an invariant distribution)

“ 4

„
ż t´t0

0

a

πnpφ2
sqds

2

.

Let us control the term πnpφ
2
sq following the same guideline as above:

πnpφ
2
uq “ πn

˜

„
ż t´t0´u

0
gsds

2
¸

“ πn

ˆ
ż t´t0´u

0

ż t´t0´u

0
gs1gs2ds1ds2

˙

ď

„
ż t´t0´u

0

a

πnpg2
sqds

2

.

We are turned to upper bound πnpg2
sq. We compute that

@s P r0, t´ t0 ´ us πnpg
2
sq “ πnpxf, Psfy

2q

ď πn
`

|f |2|Psf |
2
˘

pusing the Cauchy-Schwarz inequalityq

ď πn
`

|f |2Psp|f |
2q
˘

pusing the Jensen inequalityq

“ πn
`

Ps{2|f |
2Ps{2p|f |

2q
˘

pL and Ps are self-adjoint in L2pπnq

“ πn

´

`

Ps{2p|f |
2q
˘2
¯

ď πn
`

Ps{2p|f |
4q
˘

pusing the Cauchy-Schwarz inequalityq.

Finally, rescaling the integral between 0 and pt´ t0 ´ uq{2, we obtain that:

πnpφ
2
uq ď 4

«

ż

t´t0´u
2

0

a

πn pPsp|f |4qqds

ff2

“ 4

ˆ

a

πnp|f |4q
t´ t0 ´ u

2

˙2

pbecause πn is invariantq

“ Vn,4pt´ t0 ´ uq2.
6
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Hence, we deduce that

πnpψ
2
t´t0q ď 4Vn,4

„
ż t´t0

0
pt´ t0 ´ uqdu

2

“ Vn,4pt´ t0q4. (8)

Finally, using (7) and (8) in (6), we deduce that:

Eµ
ˆ

ˇ

ˇ

ˇ
Sn,t0,t ´ pt´ t0q

rθn

ˇ

ˇ

ˇ

2
˙

ď
2pt´ t0qVn,2

λ1,n
`
a

Vn,4pt´ t0q2
b

e´2λ1,nt0Jµ,0, (9)

which ends the proof of the proposition. �

3. Proof of Corollary 2.7 - Cost of continuous time Langevin diffusion

The proof of the first implications of iq and iiq of Corollary 2.7 are straightforward. The
non trivial technical ingredients are related to some upper bounds of the expectation with
respect to the samples ξn “ pξ1, . . . , ξnq of several quantities. These controls are given below.

Proposition 3.1. A constant C ą 0 exists such that

@n ě 1 Eθ‹rVn,4s ď Cε4
n.

Proof. We recall that Vn,4 “ Eπn |θ ´ rθn|
4 “

ş

Rd |θ ´
rθn|

4dπnpθq. We then use pa ` bq4 ď

8pa4 ` b4q and remark that:

Vn,4 ď 8
´

Eπn |θ ´ θ‹|4 ` Eπn |θ‹ ´ rθn|
4
¯

“ 8
´

Eπn |θ ´ θ‹|4 ` |θ‹ ´ rθn|
4
¯

.

The Jensen inequality (see Section 3.2.2) yields: Eθ‹ |θ‹ ´ rθn|
4 ď Eθ‹

“

Eπn |θ ´ θ‹|4
‰

. Finally,

Eθ‹rVn,4s ď 16Eθ‹
“

Eπn |θ ´ θ‹|4
‰

.

An integration by parts (see Section 3.2.2, proof of Theorem 2.3 of [GPP20]) leads to the
desired result. �

In order to deal with the Poincaré constant λ´1
1,n, we will use the result borrowed from

Inequality (1.8) of [Bob99] on log-concave measures with the help of the Cheeger inequality.
We then deduce the next proposition.

Proposition 3.2. A constant K exists such that:

Eθ‹
«

1

λ2
1,n

ff

ď 16K4Eθ‹
“

V arpπnq
2
‰

À ε4
n,

and

Eθ‹
«

1

λ4
1,n

ff

ď 64K8Eθ‹
“

V arpπnq
2
‰

À ε8
n.

Proof. We apply Inequality (1.8) of [Bob99] to the log-concave distribution πn and obtain the
sample-dependent inequality:

1

λ1,n
ď 4K2V arpπnq.

7
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We then verify that

Eθ‹
«

1

λ2
1,n

ff

ď 16K4Eθ‹
“

V arpπnq
2
‰

“ 16K4Eθ‹
´

Eπn |θ ´ rθn|
2
¯2

ď 16K4Eθ‹
´

Eπn |θ ´ rθn|
4
¯

“ 16K4Eθ‹rVn,4s.

We then apply Proposition 3.1 and obtain the desired result. The second inequality proceeds
along the same lines:

Eθ‹
«

1

λ4
1,n

ff

ď 64K8Eθ‹
“

V arpπnq
4
‰

À Eθ‹
´

Eπn |θ ´ rθn|
2
¯4

À Eθ‹
´

Eπn |θ ´ rθn|
8
¯

À ε8
n.

�

Now we aim to bound the quantity W̃npθq ´min W̃n where we recall that

θ
ĂWn “ arg min

θPRd
ĂWnpθq. (10)

Using the convexity of U and pCβq, a constant c´ ą 0 exists such that Pθ‹ ´ a.s.:

c´

´

}θ ´ θ
ĂWn}2 ^ }θ ´ θ

ĂWn}β
¯

ď
ĂWnpθq ´min ĂWn

n
.

Furthermore using that U is Lipschitz

}∇W̃npθq} “ }∇W̃npθq ´∇Wnpθ
W̃nq}

“ }
ÿ

UpXi, θq ´ UpXi, θ
W̃nq}

ď
ÿ

}UpXi, θq ´ UpXi, θ
W̃nq}

ď nL}θ ´ θW̃n},

we then deduce that:

W̃npθq ´min W̃n ď
nL

2
}θ ´ θW̃n}2.

Finally we have

c´

´

}θ ´ θ
ĂWn}2 ^ }θ ´ θ

ĂWn}β
¯

ď
ĂWnpθq ´min ĂWn

n
ď
L

2
}θ ´ θW̃n}2, (11)

which will be used to prove the next Proposition.
8
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Proposition 3.3 (Warm start - Size of Jµ,0). Assume that pCβq holds with β P r1, 2s and that
µ is the uniform distribution over BpθĂWn , aq with a ă Cn´1{2, then:

Jµ,0 “

›

›

›

›

dµ
dπn

´ 1

›

›

›

›

2

L2pπnq

“ Oidpd
d{βq

Proof. We observe that if µ is the uniform distribution on the ball centered at θĂWn and of
radius a, denoted by BpθĂWn , aq, then µpθq “ 1

adVd
1BpθĂWn ,aq where Vd refers to the Lebesgue

measure of the unit Euclidean ball: Vd “ πd{2

Γpd{2`1q . We then decompose the L2 loss as:

Jµ,0 “

ż

´

m
pnq
µ,0pθq ´ 1

¯2
πnpθqdθ

“ Zn

ż

µ2pθqe
ĂWnpθqdθ ´ 1

“
Zne

minpĂWnq

a2dV 2
d

ż

BpθĂWn ,aq
e
ĂWnpθq´ĂWnpθ

ĂWn qdθ ´ 1.

‚ Upper bound on ZneminpĂWnq. The lower bound of (11) implies that:

Zne
minpĂWnq “

ż

e´p
ĂWnpθq´ĂWnpθ

ĂWn qdθ

ď

ż

e´c´nr}θ´θ
ĂWn}2^}θ´θ

ĂWn}βsdθ

ď

ż

e´c´n}θ}
2
` e´c´n}θ}

β
dθ.

The polar change of variables θ ÞÝÑ
´

}θ}, θ
}θ}

¯

P R` ˆ Sd´1 leads to:

Zne
minpĂWnq ď pc´nq

´d{2Vd

ż `8

0
de´r

2
rd´1dr ` pc´nq´d{βVd

ż `8

0
de´r

β
rd´1dr.

Using a change of variable u “ rβ and the moments of the exponential distribution, we get:
ż `8

0
drd´1e´r

β
dr “

ż `8

0
dupd`β´2q{βe´udu “ dΓppd` β ´ 2q{β ` 1q

Therefore, a constant κ (that could be made explicit in terms of c´ and β) exists such that:

Zn ď κVd

”

n´d{2Γppd` 1q{2q ` n´d{βΓppd` 1q{βq
ı

.

‚ Upper bound on
ş

BpθĂWn ,aq e
ĂWnpθq´ĂWnpθ

ĂWn qdθ. Using the upper bound of (11), we have:
ż

BpθĂWn ,aq
e
ĂWnpθq´ĂWnpθ

ĂWn qdθ ď
ż

BpθĂWn ,aq
e
L
2
n}θ´θ

ĂWn}2dθ

ď re
L
2
na2
sadVd.

9



Suppl. Materials: On the cost of Bayesian posterior mean strategy for log-concave models

‚ Conclusion. We gather the previous inequalities and obtain that:

Jµ,0 ď
κVd

“

n´d{2Γppd` 1q{2q ` n´d{βΓppd` 1q{βq
‰

a2dV 2
d

adVdre
L
2
na2
s

ď κa´d
”

n´d{2Γppd` 1q{2q ` n´d{βΓppd` 1q{βq
ı

re
L
2
na2
s

ď 2κa´d
”

n´d{2Γppd` 1q{βq
ı

re
L
2
na2
s.

Choosing a “ n´1{2 ă 1, the Stirling formula leads to:

Jµ,0 Àid a
´dn´d{2pdqd{βre

L
2
na2
s “ Oidpd

d{βq.

�

The proof of Corollary 2.7 then follows from the previous bounds and the Cauchy-Schwarz
inequality (for Eθ‹rt‹εn,ns). Concerning the second assertion, we verify that:

Eθ‹
“

t0,‹εn,n
‰

ď Eθ‹
„

1

2λ1,n

“

logpVn,4q ` 4 logpε´1
n q ` logpJµ,0q

‰



Now, remark that λ´1
1,n “ Oidp

a

Vn,4q, which entails

Eθ‹
“

t0,‹εn,n
‰

“ Oid

´

Eθ‹
”

Vn,4 `
a

Vn,4
ı

` plogpε´1
n q ` logpJµ,0qqEθ‹

”

λ´1
1,n

ı¯

,

where we used that
?
x logpxq ď x`

?
x for non-negative x. The Cauchy-Schwarz inequality

associated with our previous intermediary results leads to:

Eθ‹rt0,‹εn,ns “ Oid

`

ε2
n

“

logpε´1
n q ` d log d

‰˘

“ Oid

`

ε2
nrd log d` log ns

˘

.

4. Discretization tools

4.1. Technical lemmas - Strongly convex discretization.

Lemma 4.1. Consider a constant sequence γi “ γ ą 0 for any integer i and associated
cumulative sum sequence ptiqiě0 given by ti “

ři
j“k0

γj “ pi´ k0qγ with γa ă 1. Then:

j
ÿ

i“k0`1

γmi e
´aptj´tiq ď

γm´1

a
.

Proof. The proof is straightforward using the explicit expression of the sequence tj ´ ti “
pj ´ iqγ:

j
ÿ

i“k0`1

γmi e
´aptj´tiq “ γm

j
ÿ

i“k0`1

e´apj´iqγ ď γm
`8
ÿ

i“0

e´aγi ď
γm

1´ e´γa
.

If we choose now γ such that γa ă 1 and use 1´ e´u ě u{2 when u P r0, 1s, we obtain that:
j
ÿ

i“k0`1

γmi e
´aptj´tiq ď

γm

aγ
ď
γm´1

a
.

�

The next lemma is useful for decreasing step-size sequences γj “ γj´b when b P p1{2, 1s.
10
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Lemma 4.2. Consider a decreasing sequence pγiqiě0 γj “ γj´b when b P p1{2, 1q and the
associated cumulative sum sequence ptiqiě0 given by ti “

ři
k“0 γk. Then for any a ą 0:

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“k0

γmi e
apti´tnq ´

γm´1
n

a

ˇ

ˇ

ˇ

ˇ

ˇ

ď Cpa, b, γqpγmn ^ γ
pm´1q`p1{b´1q
n q,

where Cpa, b, γq only depends on a, b and γ.

Proof. We introduce Sn,m “
řn
i“k0

γmi e
ati and observe that

@i ě 0 eati ´ eati´1 “ eatir1´ e´aγis “ aγie
ati ` δie

ati ,

where δi “ 1´ e´aγi ´ aγi. We then use an Abel transform:

Sn,m “
n
ÿ

i“k0

γmi e
ati “

n
ÿ

i“k0

γm´1
i

1

a
raγie

atis

“

n
ÿ

i“k0

ˆ

γm´1
i

1

a
reati ´ eati´1s ´ γm´1

i δie
ati

˙

“
1

a
eatnγm´1

n ´
1

a
eatk0γm´1

k0
`

n
ÿ

i“k0

eatirγm´1
i ´ γm´1

i`1 s ´ e
atiγm´1

i δi

Now, observe that when γi “ γ1i
´b, then

γm´1
i ´ γm´1

i`1 ď γm´1
i

bpm´ 1q

i
,

whereas δi ď 0 and:
|δi| ď a2γ2

i .

We obtain:

Sn,m “
n
ÿ

i“k0

γmi e
ati ď

eatnγm´1
n

a
` bpm´ 1q

n
ÿ

i“k0

γm´1
i

i
eati `

n
ÿ

i“k0

γm`1
i eati

“
eatnγm´1

n

a
` bpm´ 1qγ

´1{b
1 Sn,m`1{b´1 ` Sn,m`1.

Using that when m1 ą m, we have:

lim
nÝÑ`8

Sn,m1

Sn,m
“ 0,

we deduce that:

Sn,m “
eatnγm´1

n

a
` o

ˆ

eatnγm´1
n

a

˙

.

Then, a comparison argument leads to the conclusion of the lemma. �

Lemma 4.3. Consider a decreasing sequence pγiqiě0 γj “ γj´1 and the associated cumulative
sum sequence ptiqiě0 given by ti “

ři
k“0 γk. Then for any a ą 0, a constant Cpa, γq exists

such that

@m P N‹
ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“k0

γmi e
apti´tnq ´

γm´1
n

a

ˇ

ˇ

ˇ

ˇ

ˇ

ď Cpa, γqγmn .

11
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Proof. We use that a constant c0 exists such that:

ti “
i
ÿ

k“0

γk “ γ logpiq ` c0 ` γεpiq,

where εpiq “ Op1{iq. Therefore, we have:
n
ÿ

i“k0

γmi e
apti´tnq “ γme´atneac0

n
ÿ

i“k0

i´meaγ logpiqeγεpiq

“ γme´atneac0
n
ÿ

i“k0

i´m`aγeγεpiq “ γm´1
n

γ

aγ `m´ 1
`Opγmn q.

�

Lemma 4.4. Consider a positive decreasing sequence pγiqiě0 and the associated cumulative
sum sequence ptiqiě0 given by ti “

ři
k“0 γk. Then for any a ą 0 such that γ1a ă 1:

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“k0

γie
´apti´tk0

q

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

a
` a

n
ÿ

i“k0

γ2
i .

Proof. We write:
e´ati “ e´ati´1e´aγi ,

which implies that:

e´ati ´ e´ati´1 “ e´atir1´ eaγis “ ´aγie
´ati ` δie

´ati with εi “ 1` aγi ´ e
aγi .

Now, observe that when aγ1 ď 1, then εi ď a2γ2
i . Then, a telescopic sum argument yields:

n
ÿ

i“k0

γie
´apti´tk0

q “ eatk0

n
ÿ

i“k0

1

a
re´ati´1 ´ e´atis `

n
ÿ

i“k0

εi
a
e´apti´tk0

q

ď
1

a
`

n
ÿ

i“k0

|εi|

a

ď
1

a
` a

n
ÿ

i“k0

γ2
i .

�

Proof of Proposition 5.2. We define Fx,y by Fx,yptq “ 1
2Er|Z

x
t ´ Z̄yt |

2s where the expectation
is computed with respect to the Brownian motion trajectory pBtqtě0. The Lebesgue and Ito
theorems yield:

F 1x,yptq “ E
“

xZxt ´ Z̄
y
t , bpZ

x
t q ´ bpyqy

‰

“ E
“

xZxt ´ Z̄
y
t , bpZ

x
t q ´ bpZ̄

y
t qy

‰

` E
“

xZxt ´ Z̄
y
t , bpZ̄

y
t q ´ bpyqy

‰

ď ´
ρ

2
Fx,yptq ` E

“

xZxt ´ Z̄
y
t , bpZ̄

y
t q ´ bpyqy

‰

, (12)

where in the last line we used (37). The Young inequality yields:

E
“

xZxt ´ Z̄
y
t , bpZ̄

y
t q ´ bpyqy

‰

ď
ρ

4
E|Zxt ´ Z̄

y
t |

2 `
2

ρ
E|bpZ̄yt q ´ bpyq|

2.

12
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Since b is L-Lipschitz and Z̄yt “ y ` tbpyq `
?

2Bt , we obtain that:

E|bpZ̄yt q ´ bpyq|
2 ď L2E|Z̄yt ´ y|

2 “ L2pt2|bpyq|2 ` 2dtq.

We obtain the differential inequality:

F 1x,yptq ď ´
ρ

4
Fx,yptq `

L2

ρ
t2|bpyq|2 ` 2

L2

ρ
dt.

A straightforward integration yields:

Fx,yptq ď Fx,yp0qe
´
ρ
4
t `

L2

ρ
|bpyq|2

ż t

0
e
ρ
4
ps´tqs2ds` 2

L2

ρ
d

ż t

0
e
ρ
4
ps´tqsds

ď Fx,yp0qe
´
ρ
4
t `

L2

ρ
|bpyq|2

ż t

0
s2ds` 2

L2

ρ
d

ż t

0
sds

ď |x´ y|2e´
ρ
4
t `

L2

ρ
dt2 `

4

3

L2

ρ
|bpyq|2t3,

which concludes the proof. �

Proof of Proposition 5.3. Recall that we shall use

2
ρ2

L
pW pxq ´minW q ď |bpxq|2 ď

2L2

ρ
pW pxq ´minW q. (13)

In the sequel for a vector x the notation xt holds for the transpose of the vector x. Let us start
with supkě0 E|bpX̄tkq|

2. Using a conditional expectation and a Taylor formula, the notations
ĂW “ W ´minW and ζk`1 “ Uk`1{

?
2γk`1 „ N p0, 1q such that

?
2γk`1ζk`1 “ Btk`1

´ Btk ,
we observe that:

ErĂW pX̄tk`1
qs “ E

”

ĂW pX̄tkq ` x∇ĂW pX̄tkq, γk`1bpX̄tkq `
a

2γk`1ζk`1y

ı

` E
„

1

2
rγk`1bpX̄tkq `

a

2γk`1ζk`1s
t∇2

ĂW pυk`1qrγk`1bpX̄tkq `
a

2γk`1ζk`1s



ď ErĂW pX̄tkqs ´ γk`1Er|bpX̄tkq|
2s ` γ2

k`1LEr|bpX̄tkq|
2s ` 2Lγk`1d

ď ErĂW pX̄tkqs

ˆ

1´ γk`1p1´ γk`1Lq
2ρ2

L

˙

` 2Lγk`1d

ď ErĂW pX̄tkqs

ˆ

1´ γk`1
ρ2

L

˙

` 2Lγk`1d,

where in the last line we used that 2Lγk`1 ď 1. Using the definition of ĂW and a straigthforward
recursion, we obtain that:

@k ě 0 ErW pX̄tkqs ďW pyq ` 2d
L2

ρ2
. (14)

Now we treat suptě0 E|bpZxt q|2. We apply the Ito formula to uxptq “ ErĂW pZxt qs “ ErW pZxt q´
minW s and obtain:

@x P Rd @t ě 0 : u1xptq “ ErxbpZxt q,∇W pZxt qy `∆W pZxt qs

“ ´E|∇W pZxt q|2 ` E∆W pZxt q ď ´2
ρ2

L
uxptq ` dL,

13
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where in the last line we used Inequality (13). A straightforward integration yields:

@t ě 0 uxptq ď uxp0qe
´2 ρ

2

L
t ` dLe´2 ρ

2

L
t

ż t

0
e2 ρ

2

L
sds ď ĂW pxq `

dL2

2ρ2
.

Inequality (13) implies that

sup
sě0

E|bpZxs q|2 ď
2L2

ρ
sup
sě0

ErĂW pZxs qs ď
2L2

ρ

„

ĂW pxq `
dL2

2ρ2



.

�

4.2. Technical lemmas - Weakly convex discretization.

4.2.1. Exponential bounds for the continuous-time process.

Lemma 4.5. Assume that pAqL and pHc1
q hold and let a P p0, 1q. Then,

ExreaW pXtqs ď eaW pxqe´ãt ` βdpaq,

where ã “ ap1´ aq´1 and βdpaq :“ βpa, p1´ aq´1, 0q is defined by (20).

Proof. We apply the Ito formula to fa defined by fapxq “ eaW pxq (a has to be chosen):

Lfapxq

fapxq
“ ´a|∇W pxq|2 ` a2|∇W pxq|2 ` a∆W pxq

ď
a

1´ a

`

´|∇W pxq|2 ` dp1´ aq´1λ̄∇2W pxq
˘

.

Setting ã “ ap1´ aq´1 and c “ p1´ aq´1, we deduce from pHc1
q and pAqL that:

Lfapxq ď ´ãfapxq1txPCcc,γ0
u ` ãfapxq

`

´|∇W pxq|2 ` dp1´ aq´1λ̄∇2W pxq
˘

1txPCc,γ0u
(15)

ď ´ãfapxq ` ãfapxq
`

1` dp1´ aq´1λ̄∇2W pxq
˘

1txPCc,γ0u
(16)

ď ´ãfapxq ` ãβpa, p1´ aq´1, 0q.

It follows that pMtqtě0 is a true martingale and the Gronwall lemma leads to:

ExrfapXtqs ď fapxqe
´ãt ` βpa, p1´ aq´1, 0q

ż s

0
ãeãps´tqds ď fapxqe

´ãt ` βpa, p1´ aq´1, 0q.

�

4.2.2. Exponential bounds for the continuous-time Euler scheme.

Lemma 4.6. Assume pHc1
q. Assume that γ ď γ0 :“ p4dL` 512q´1, then

sup
tě0

Exre
1
8
W pX̄tqs Àid e

1
8
W pxq ` β̄d,

where β̄d “ βp1{8, 5, γ0q.

Remark 1. The proof of this result is rather technical and the important thing is to pay a
specific attention to the dependency with respect to d and L (the weakest dependency with
respect to d). As indicated in our statement, we are led to choose γ proportional to pLdq´1.

14
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Proof. Using the Taylor formula, we get:

W pX̄tk`1
q ďW pX̄tkq ´ γ|∇W pX̄tkq|

2 ` x∇W pX̄tkq,∆k`1y

`

ˆ
ż 1

0
λ̄∇2W pX̄

pθq
tk
qdθ

˙

pγ2|∇W pX̄tkq|
2 ` |∆k`1|

2q,

where ∆k`1 “
?

2pBtk`1
´ Btkq and X̄

pθq
tk
“ X̄tk ` θp´γ∇W pX̄tkq `∆k`1q. Let a P p0, 1{8s.

Setting fapxq “ eaW pxq and using pAqL, we deduce that:

ErfapX̄tk`1
q|Ftks ď fapX̄tkqe

p´aγ`Laγ2q|∇W pX̄tk q|
2
ΨγpX̄tkq, (17)

where

Ψγ : x ÞÝÑ E exp

ˆ

a
a

2γx∇W pxq, Zy ` 2aγ

ˆ
ż 1

0
λ̄∇2W pxpθ, γ, Zqqdθ

˙

|Z|2
˙

,

with Z „ N p0, Idq and xpθ, γ, zq :“ x ` θp´γ∇W pxq ` ?γzq. We decompose Ψγ into two
parts:

Ψγpxq “ E
„

exp

ˆ

a
a

2γx∇W pxq, Zy ` 2aγ

ˆ
ż 1

0
λ̄∇2W pxpθ, γ, Zqqdθ

˙

|Z|2
˙

1t|Z|2ď2γ´1u



loooooooooooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooooooooooon

:“Ψ
p1q
γ pxq

` E
„

exp

ˆ

a
a

2γx∇W pxq, Zy ` 2aγ

ˆ
ż 1

0
λ̄∇2W pxpθ, γ, Zqqdθ

˙

|Z|2
˙

1t|Z|2ą2γ´1u



loooooooooooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooooooooooon

:“Ψ
p2q
γ pxq

.

‚ Upper bound of Ψ
p1q
γ pxq. On t|Z|2 ď 2γ´1u, |xpθ, γ, Zq ´ x| ď γ|∇W pxq| ` 2, so that:

Ψp1qγ pxq ď E
”

exp
´

a
a

2γx∇W pxq, Zy ` 2aγλ̄locpγ, xq|Z|
2
¯ı

ď

d
ź

i“1

EZ1„N p0,1qre
?

2γaBiW pxqZ1`2aγλ̄locpγ,xqZ
2
1 s,

where we used λ̄locpγ, xq :“ supuPBpx,γ|∇W pxq|`2q λ̄∇2W puq. Using that

@α1 P R @α2 ă 1{2 EZ1„N p0,1qre
α1Z1`α2Z2

1 s “
1

?
1´ 2α2

e
α2

1
2p1´2α2q . (18)

Since 4γλ̄locpγ, xqa ď γL{2 ă 1, we deduce that:

Ψp1qγ pxq “

ˆ

1

1´ 4γaλ̄locpγ, xq

˙
d
2

e
γa2|∇W pxq|2

1´4aγλ̄locpγ,xq “ exp

ˆ

´
d

2
logp1´ 4aγλ̄locq `

γa2|∇W pxq|2

1´ 4aγλ̄loc

˙

.

Choosing a ď 1
8 and using that 4γpdL ` 128q ď 1, we verify that 4aγλ̄loc ď 1{4. Since

logp1´ uq ě ´5{4u when u P r0, 1{4s, we obtain that:

Ψp1qγ pxq ď exp

ˆ

5

2
aγdλ̄locpγ, xq `

γa|∇W pxq|2

7

˙

. (19)

15
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‚ Upper bound of Ψ
p2q
γ pxq. We use the Cauchy-Schwarz inequality and obtain that:

Ψp2qγ pxq ď E
”

exp
´

2a
a

2γx∇W pxq, Zy ` 4aγL|Z|2
¯ı

1
2 “P

`

|Z|2 ě 2γ´1
˘‰

1
2

“ exp

ˆ

´
d

4
logp1´ 8aγLq `

2γa2|∇W pxq|2

p1´ 8aγLq

˙„

P
ˆ

|Z|2

d
´ 1 ě

2

γd
´ 1

˙

1
2

ď exp

ˆ

d

4
2p8aγLq `

γa|∇W pxq|2

6
exp

ˆ

´
d

8

ˆ

2

γd
´ 1

˙˙

1
2

ď exp

ˆ

γdL

2
`
γa|∇W pxq|2

6

˙

exp

ˆ

´
1

8γ
`

d

16

˙

ď exp

ˆ

´
γ´1

8

„

1´ 4γ2dL´
γd

2



`
γa|∇W pxq|2

6

˙

,

where the last inequality comes from the Bennett inequality applied with u “ 2pγdq´1´1 ě 1.
Using that 4γdpL` 4q ď 1, we then obtain that:

Ψp2qγ pxq ď exp

ˆ

´
γ´1

32
`
γa|∇W pxq|2

6

˙

. (20)

We then use (20) and (19) in (17) and obtain that:

ErfapX̄tk`1
q|Ftks ď ErfapX̄tkqse

p´aγ`Laγ2q|∇W pX̄tk q|
2

ˆ

„

exp

ˆ

5

2
aγdλ̄locpγ, X̄tkq `

γa|∇W pX̄tkq|
2

7

˙

` exp

ˆ

´
γ´1

32
`
γa|∇W pX̄tkq|

2

6

˙

ď ErfapX̄tkqse
´aγp1´Lγ´ 1

6q|∇W pX̄tk q|
2

ˆ

exp

ˆ

5

2
aγdλ̄locpγ, X̄tkq

˙

` exp

ˆ

´
1

32γ

˙˙

ď ErfapX̄tkqs

„

exp

ˆ

´
1

32γ

˙

` e
aγ
2 r´|∇W pX̄tk q|

2`5dλ̄locpγ,X̄tk qs



,

because 1´ γL´ 1
6 ě 1´ 1

4 ´
1
6 ě

1
2 .

Using our assumption pHc1
q and the notations introduced in (19), we know that:

´|∇W pxq|2 ` 5dλ̄locpγ, X̄tkqq ď ´1 on Cc5,γ0
.

We introduce ργ “ e´
γa
2 ` e

´ 1
32γ . Thereore, we have:

ErfapX̄tk`1
q|Ftks ď fapX̄tkq

´

e
´ 1

32γ ` e
aγ
2 r´|∇W pX̄tk q|

2`5dλ̄locpγ,X̄tk qsr1tX̄tkPC
c
5,γ0

u ` 1tX̄tkPC5,γ0u
s

¯

ď fapX̄tkq

´

e
´ 1

32γ ` e´
γa
2 1tX̄tkPC

c
5,γ0

u ` e
aγ
2
p´|∇W ppX̄tk q|

2`5dLq1tX̄tkPC5,γ0u

¯

ď fapX̄tkq

´

e
´ 1

32γ ` e´
γa
2 ´ e´

γa
2 1tX̄tkPC5,γ0u

` e
aγ
2
p´|∇W ppX̄tk q|

2`5dLq1tX̄tkPC5,γ0u

¯

ď ργfapX̄tkq ` fapX̄tkq

´

e
5
2
aγdL ´ e´

γa
2

¯

1tX̄tkPC5,γ0u
.

ď ργfapX̄tkq ` e
´
γa
2 fapX̄tkq

´

e
γa
2
p1`5dLq ´ 1

¯

1tX̄tkPC5,γ0u
.

16
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On the first hand, using that a “ 1{8, γ ď 1{512 and the elementary inequalities, expp´xq ď
1´ 3

4x on r0, 1{5s and expp´xq ď 1{p800xq on r16,`8q, we get:

ργ ď 1´
3γ

64
`

32γ

800
ď 1´ cγ,

where c is a positive numerical constant independent of d and L. On the other hand, we
observe that γa

2 p1` 5dLq “ γ
16 p1` 5dLq ď 1. Using ex ď 1` 2x on r0, 1s, we get:

e
γ
16
p1`5dLq ´ 1 ď

γ

8
p1` 5dLq .

Thus, setting vk “ ErfapX̄tkqs, we obtain that:

@k ě 0 vk`1 ď p1´ cγqvk ` γβ̄d,

where β̄d “
βp1{8,5,γ0q

8 . An induction leads to

@k ě 1 vk ď γβ̄d

k´1
ÿ

j“0

p1´ cγqj ` p1´ cγqkv0 “ γβ̄d
1´ p1´ cγqk

1´ p1´ cγq
` p1´ cγqkv0.

We finally deduce that

sup
kě0

Exre
1
8
W pX̄tk qs Àid e

1
8
W pxq ` β̄d.

To extend to any time t ě 0, it is enough to write for any t P rtk, tk`1s :

ErfapX̄tqs “ ErErfapX̄tq|Ftkss,

and then to adapt the beginning of the proof. The details are left to the reader. �

We conclude this section by a useful technical result for our purpose.

Proposition 4.7. Assume pHc1
q. Assume that γ ď p4dL ` 512q´1 and consider p ą 0. If

minW ą 0, then:

sup
tě0

ExrW ppXtqs ` sup
tě0

ExrW ppX̄tqs ď c2p
`

W ppxq ` bpd
˘

,

where bd “ logpβ̄dq is defined in Equation (20) and c does not depend on d and p.

Proof. We first assume that p ą 1: We denote by T “ exppW pX̄tq{8q and observe that
tW pX̄tqu

p “ 8p logppT q. We then compute:

ExrW ppXtqs “ 8pExrlogppT qs

ď 8pExrlogppT q1Těep´1s ` 8pExrlogppT q1Tďep´1s

ď 8pExrlogppT q1Těep´1s ` 8ppp´ 1qp

ď 8p
ż `8

ep´1

logpptqqptqdt` 8ppp´ 1qp,

where q is the probabiliy density function of T . We introduce Qp “
ş`8

ep´1 qpuqdu P p0, 1q and
observe that q̃ :“ q{Qp is a probability density function on rep´1,`8r.

17
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ExrW ppXtqs ď 8pQp

ż `8

ep´1

logpptqq̃ptqdt` 8ppp´ 1qp

ď 8pQp logp
„
ż `8

ep´1

tq̃ptqdt


` 8ppp´ 1qp

where in the last line we applied the Jensen inequality to the concave function x ÞÑ plog xqp

on rep´1,`8q when p ą 1. We then deduce that

ExrW ppXtqs ď 8pQp logp
„
ż `8

ep´1

tqptqdt


` 8pQp logprQ´1
p s ` 8ppp´ 1qp

ď 8p logp
`

Ex
“

exppW pX̄tq{8q
‰˘

` 8p max
xPp0,1q

x logppx´1q ` 8ppp´ 1qp

“ 8p logp
`

Ex
“

exppW pX̄tq{8q
‰˘

` 8pppe´p ` 8ppp´ 1qp

Àid logp
”

e
1
8
W pxq ` β̄d

ı

` 1,

where we applied Lemma 4.6 in the last line and use that the other terms are independent
from d. We then observe that

logp
”

e
1
8
W pxq ` β̄d

ı

ď

´

log
”

e
1
8
W pxq ` β̄d

ı¯p
ď

´

log 2e
1
8
W pxq ` log 2β̄d

¯p
Àid 1`W ppxq ` bpd.

It then implies the conclusion of the lemma. The case p P p0; 1s is dealt with in the same way,
the function logp being concave on p0,`8q, and a similar argument permits to conclude. �

4.2.3. Analysis of the first and second variation processes. We introduce the first variation
process Y ..

“ pY ijq1ďi,jďd defined for all pi, jq P t1, . . . , du2 by Y ij
s “ BxjtX

x
s u
i where tXx

s u
i

denotes the ith component of Xx
s . Y

.. is thus a matrix-valued process solution of the ordinary
differential equation:

Y
..

0 “ Id and
dY

..

s

ds
“ ´∇2W pXtqY

..

t . (21)

We also need to introduce the second variation process Y ...
“ pY ijkq1ďi,j,kďd defined for all

pi, j, kq P t1, . . . , du3 by Y ijk
s “ BxjξktX

x
s u
i. For all pj, kq P t1, . . . , du2, Y .jk “ pY ijkq1ďiďd is a

solution of

Y .jk
0 “ 0 and dY .jk

t “ ´

´

pY .j
t q

T∇3W pXtqY
.k
t `∇2W pXtqY

.jk
t

¯

dt. (22)

Lemma 4.8. (i) For all j P t1, . . . , du, |Y .j
t |

2 ď e´2
şt
0 λW pXsqds. In particular,

}Y
..

t }
2
F ď de´2

şt
0 λW pXsqds.

(ii) For all pj, kq P t1, . . . , du2,

|Y .jk
t |2 Àid d}∇3W }28p1` t

2qe´
şt
0 λW pXuqdu,

where }∇3W }8 “ 1_ sup1ďiďd,xPRd λ̄∇3
i..W pxq

(∇3
i..W pxq is the symetric matrix defined for all

i P t1, . . . , du by ∇3
i..W pxq “ pD

3
ijkpxqq1ďj,kďd).

18
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Proof. piq By (21), for all j P t1, . . . , du, dY .j
t “ ∇2W pXtqY

.j
t dt. Thus,

d|Y .j
t |

2

dt
“ ´2xY .j

t ,∇2W pXtqY
.j
t y

ď ´2λW pXtq|Y
.j
t |

2dt.

The first assertion easily follows from a Gronwall-type argument.

(ii) From (22), we deduce that:

d|Y .jk
t |2

dt
ď ´2xY .jk

t , pY .j
t q

T∇3W pXtqY
.k
t y ´ 2λW pXtq|Y

.jk
t |2

ď ´2λW pXtq|Y
.jk
t |2 ` 2|pY .j

t q
T∇3W pXtqY

.k
t | ˆ |Y

.jk
t |. (23)

Remark that:

|pY .j
t q

T∇3W pXtqY
.k
t | “

g

f

f

e

d
ÿ

i“1

xY .,j
t ,∇3Wi,.,.pXtqY

.,k
t y2

ď
?
d}∇3W }8|Y

.j
t | ˆ |Y

.k
t |

ď
?
d}∇3W }8e

´
şt
0 λW pXsqds

looooooooooooooomooooooooooooooon

“:At

,

by piq. Thus, setting ϕt “ |Y
.jk
t |2 and plugging the previous control into inequality (23) yields:

ϕ1t ď ´2λW pXtqϕt `At
?
ϕt.

Set Λt “
şt
0 λW pXsqds. By Lemma 4.9, it follows that:

|Y .jk
t |2 ď 2

?
d}∇3W }8e

´Λt

ż t

0
e´Λsds` d}∇3W }28e

´2Λt

„
ż t

0
e´Λsds

2

ď 2
?
d}∇3W }8te

´Λt ` d}∇3W }28t
2e´2Λt ,

by using that Λs ě 0 on r0, ts. The result follows. �

Lemma 4.9. Define Λt “
şt
0 λsds and assume that t ÞÝÑ ϕt satisfies ϕ0 “ 0 and

ϕ1t ď ´2λtϕt ` 2At
?
ϕt, t ě 0,

where At ě 0 for any t, then:

ϕt ď 2e´Λt

ż t

0
Ase

Λsds` e´2Λt

„
ż t

0
Ase

Λsds

2

.

Proof. We consider t ÞÝÑ
?

1` ϕte
Λt and observe that:

´

a

1` ϕte
Λt
¯1

“ eΛt

„

ϕ1t
2
?

1` ϕt
` λt

a

1` ϕt



ď
eΛt

?
1` ϕt

r´λtϕt `
?
ϕtAt ` λt ` λtϕts

ď λte
Λt `Ate

Λt .
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A straitghtforward integration yields:

a

1` ϕte
Λt ´ 1 ď eΛt ´ 1`

ż t

0
Ase

Λsds,

which implies that
?

1` ϕt ď 1` e´Λt
şt
0Ase

Λsds. We then obtain the desired result. �

4.2.4. Solution of Poisson equation. Bounds on the solution of the Poisson equation and its
derivatives . We remind that g is solution of the Poisson equation Id´ πpIdq “ Lg and x‹ is
a minimizer of W .

Proof of Proposition 6.1. Uniqueness: Consider two C2 solutions g1 and g2. Then, Lpg1´g2q “

0 and:
ż

pg1 ´ g2qLpg1 ´ g2qdπ “ ´
ż

|∇pg1 ´ g2q|
2dπ.

Since the operator L is elliptic, we know that the density of π is a.s. positive so that g1 ´ g2

is constant. The constraint πpg1q “ πpg2q “ 0 implies that g1 “ g2.
Existence: Let gtpxq “

şt
0 νpfq ´ Psfpxqds. Following the arguments of Proposition 6.3 and

its proof below (mainly the fact that the first and second variation processes go to 0 in L1,
sufficiently fast and locally uniformly in x), g is well-defined, of class C2 and, pgtq, Dgt andD2gt
converge locally uniformly to g, Dg and D2g respectively. In particular, Lg “ limtÑ`8 Lgt.
Now, using that L is a linear operator (null on constant functions) and the Dynkin formula,
we get:

Lgtpxq “
ż t

0
Lpνpfq ´ Psfqpxqds “ P0fpxq ´ Ptfpxq “ fpxq ´ Ptpfqpxq

tÑ`8
ÝÝÝÝÑ fpxq ´ πpfq.

Then, Lgpxq “ limtÑ`8 Lgtpxq “ fpxq´πpfq for every x P Rd (see Proposition A.8 of [PP14]
for a similar but more detailed proof).

�

Proof of Proposition 6.3. The fact that g is twice-differentiable is proved along the proof.
Proof of iq. If the conditions of the Lebesgue differentiability are met (checked later on), then:

Dgpxq “

ż `8

0
ErY

..

t sdt.

By Lemma 4.8,

Exr}Y
..

t }
2
F s ď dExre´2

şt
0 λW pXsqdss.

Thus, for every positive δ1, we have

Exr}Y
..

t }
2
F s ď de´2p1`tqδ1 ` dP

ˆ
ż t

0
λ∇2W pXuqdu ď p1` tqδ1

˙

.
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Then, using pHc2,r
q and the Markov inequality, we get for every positive e,

Exr}Y
..

t }
2
F s ď de´2p1`tqδ1 ` dP

ˆ
ż t

0
W´rpXuqdu ď c2p1` tq

δ1

˙

ď de´2tδ1 ` dP

˜

ˆ
ż t

0
W´rpXuqdu

˙´2p1`eq

ě pc2p1` tq
δ1q´2p1`eq

¸

ď de´2tδ1 ` dpc2p1` tq
δ1q2p1`eqE

«

ˆ
ż t

0
W´rpXuqdu

˙´2p1`eq
ff

.

Since x ÞÑ x´2p1`eq is convex on p0,`8q, it follows from the Jensen inequality that

Exr}Y
..

t }
2
F s ď de´2tδ1 ` dpc2p1` tq

δ1q2p1`eqp1` tq´2p1`eq sup
uě0

ExrW 2rp1`eqpXuqs. (24)

Setting δ1 “ e{p2p1` eqq and using again the Jensen inequality, we obtain

Exr}Y
..

t }F s ď
?
de´2t

e
1`e
`
?
dc1`e2 p1` tq´1´ e

2 sup
uě0

ExrW rp1`eqpXuqs.

Using Corollary 4.7, we have

sup
uě0

ExrW rp1`eqpXuqs Àid W
rp1`eqpxq ` b

rp1`eq
d .

so that

Exr}Y
..

t }F s Àid

?
de´2t

e
1`e
`
?
dc1`e2 p1` tq´1´ e

2

´

W rp1`eqpxq ` b
rp1`eq
d

¯

.

The above property has a series of consequences. First, it implies that g is well-defined.
Actually,

|Ptfpxq ´ πpfq| ď

ż

|Ptfpxq ´ Ptfpyq|πpdyq ď }∇f}8

ż

sup
zPrx,ys

Ezr}Y
..

t }Fs|y ´ x|πpdyq

ď C maxpe´2t
e

1`e
p1` tq´1´ e

2 q

ż

pW rp1`eqpxq `W rp1`eqpyq|y ´ x|πpdyq

ď Cx maxpe´2t
e

1`e
p1` tq´1´ e

2 q. (25)

In the above inequalities, we used the convexity of W and the fact that π integrates functions
with polynomial growth (simple consequence of Lemma 4.5). It also implies that the Lebesgue
differentiability theorem applies. Dgpxq is thus well-defined on Rd and:

}Dgpxq}2F ď

ˆ
ż `8

0
Exr}Y

..

t }F sdt

˙2

ď ced
´

1` c
2p1`eq
2

´

W 2rp1`eqpxq ` b
2rp1`eq
d

¯¯

.

For the second inequality of this assertion, we use Lemma 4.6. More precisely:

Exr}DgpX̄tq}
2
F s ď ced

´

1` c
2p1`eq
2

´

ExrW 2rp1`eqpX̄tqs ` b
2rp1`eq
d

¯¯

. (26)

Then, we conclude using Corollary 4.7.
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Proof of ii´ aq. Write xs “ x‹`spx´x‹q, the Taylor and the Cauchy-Schwarz formulas yield:

|gpxq ´ gpx‹q| ď

g

f

f

e

d
ÿ

i“1

ˆ
ż 1

0
x∇gipxsq, x´ x‹yds

˙2

ď

ˆ
ż 1

0
}Dgpxsq}Fds

˙

|x´ x‹|

ď ce
?
d|x´ x‹|

ˆ

1` c1`e2

ˆ
ż 1

0
W rp1`eqpxsqds` b

rp1`eq
d

˙˙

. (27)

Using that ∇W px‹q “ 0, assumption pHc2,r
q and a Taylor formula on pW pxsqqsPr0,1s:

W pxq ěW px‹q ` c2|x´ x
‹|2

ż 1

0
W´rpxsqds.

The application x ÞÑ x´
1

1`e is convex and the Jensen inequality leads to:

c2|x´ x
‹|2

ˆ
ż 1

0
W rp1`eqpxsqds

˙´ 1
1`e

ďW pxq.

Thus, on the one hand,

c1`e2 |x´ x‹|

ˆ
ż 1

0
W rp1`eqpxsqds

˙

ďW
1
2 pxqc

1
2
`e

2

ˆ
ż 1

0
W rp1`eqpxsqds

˙1` 1
2p1`eq

Àid c
1
2
`e

2 W
1
2 pxq

´

W rp1`eqpxq
¯1` 1

2p1`eq
Àid c

1
2
`e

2 W
1`3r

2
`repxq

where in the second line, we used that s ÞÝÑ W pxsq is increasing because W is convex. On
the other hand, with similar arguments,

|x´ x‹| ď c
´ 1

2
2 W

1
2 pxq

ˆ
ż 1

0
W rp1`eqpxsqds

˙

1
2p1`eq

Àid c
´ 1

2
2 W

1`r
2 pxq.

Proof of ii´ bq. We apply the result of ii´ aq and obtain that:

Ex0r|gpX̄tq ´ gpx
‹q|2s ď ced

´

c1`2e
2 Ex‹rW 1`3r`repX̄tqs ` b

rp1`eq
d Ex‹rW

1`r
2 pX̄tqs

¯

.

Then, by Corollary (4.7) and the fact that W px0q Àid bd, we deduce that:

Ex0r|gpX̄tq ´ gpx
‹q|2s ď ced

ˆ

c1`2e
2 b1`3r`2re

d ` b
rp1`eq
d b

1`r
2

d

˙

ď cec
1`2e
2 db1`3r`2re

d .

To deduce the result, we upper bound |gpx0q ´ gpx
‹q| by (27) and use that W px0q Àid bd.

Proof of iiiq. We use Lemma 4.8, which implies that:

Er|Y .jk
t |s Àid

?
d}∇3W }8p1` tqEre´

1
2

şt
0 λW pXuqdus.

The rest of the proof follows the lines of iiq. More precisely: for every positive δ1,

Er|Y .jk
t |s Àid

?
d}∇3W }8p1` tq

ˆ

e´t
δ1
` P

ˆ
ż t

0
λ∇2W pXuqdu ď 2p1` tqδ1

˙˙

.

Then, similarly as in (24), we deduce from pHc2,r
q, from the Markov inequality and from the

convexity of x ÞÑ x´2p1`eq that for every positive e ą 0,

Er|Y .jk
t |s Àid

?
d}∇3W }8p1` tq

ˆ

e´t
δ1
pc2p1` tq

δ1q2p1`eqp1` tq´2p1`eq sup
uě0

ErW 2rp1`eqpXuqs

˙

.
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Then, with δ1 “ ep2p1` eqq´1, it yields:

Er|Y .jk
t |s Àid

?
d}∇3W }8

ˆ

p1` tqe´t
δ1
c
2p1`eq
2 p1` tq´1´e sup

uě0
ErW 2rp1`eqpXuqs

˙

.

Thus, similarly as in piiq, we deduce from Corollary 4.7 that a constant C, which does not
depend on d, j and k such that:

Exr|Y .jk
t |s ď C

?
d}∇3W }8

´

p1` tqe´t
δ1
` c

2p1`eq
2 p1` tq´1´e

´

W 2rp1`eqpxq ` b
2rp1`eq
d

¯¯

.

Then, applying the Lebesgue differentiability theorem, it yields:

|D2
jkgpxq|

2 ď ced}∇3W }28

´

1` c
2p1`eq
2

´

W 4rp1`eqpxq ` b
4rp1`eq
d

¯¯

,

and iii´aq follows. The last point comes from Corollary 4.7 (details are left to the reader). �
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