Fabrication d’une mini-éolienne

Introduction à l’éolienne

Notre consommation d’énergie a atteint un point tel que l’épuisement des sources d’énergies fossiles est imminent. C’est pourquoi, nous devons nous concentrer sur le développement des énergies renouvelables, notamment l’énergie éolienne.

Le vent est une des premières énergies utilisées par l’Homme, que ce soit pour la navigation ou encore faire tourner les moulins. Aujourd’hui, c’est une nouvelle façon de produire de l’électricité. Le processus consiste à transformer l’énergie cinétique du vent en énergie mécanique grâce à la rotation d’un arbre. Cette énergie va alors devenir électrique grâce à un générateur électrique.

En ce qui concerne le fonctionnement, nous allons l’expliquer simplement. Tout d’abord, le vent, suffisamment fort, fait tourner les pâles de l’éolienne, ce qui entraine la rotation du moyeu et de l’arbre principal. Cet arbre passe ensuite dans un multiplicateur qui va augmenter considérablement sa vitesse de rotation. La vitesse de rotation doit être élevé en sortie afin de faire démarrer l’alternateur grâce à une vitesse du rotor assez élevé. Par la suite, l’alternateur génère de l’électricité grâce à un système d’électro-magnétisme. Ce courant électrique est alternatif, il doit être transformé dans le transformateur, puis il rejoint le réseau électrique grâce aux câbles.

Comment fabriquer une eolienne ?

Le materiel

Pour fabriquer notre éolienne nous avons choisi de faire une méthode utilisant beaucoup de matériel récupéré. Il a aussi fallu commander quelques éléments notamment pour le circuit électrique.

Liste de matériel

  1. Moteur continu
  2. Régulateur
  3. Redresseur de tension
  4. Condensateur
  5. Carte électronique
  6. Planche de bois
  7. Mat en bois
  8. Pied de parasol
  9. 3 Pâles imprimées en 3D
  10. Moyeu imprimé en 3D
  11. Support moteur imprimé en 3D
  12. Vis
Figure 1 : illustration du matériel nécessaire

Etape 1 : Le circuit electrique

Nous avons commencé par réaliser le circuit électrique car ce sont les premiers matériaux que l’on a reçu. Nous avons utilisé une carte en métal pour poser tous nos composants, puis nous les avons brasés ensemble, en respectant attentivement le circuit suivant.

Figure 2 : Schéma du circuit électrique

Dans un premier temps nous avons intégré la sortie du moteur sur la carte. Puis nous avons positionné le pont de redressement et brasé les branches du moteur à celles de courant alternatif du redresseur.

Dans un second temps, nous avons brasé la branche + du redresseur avec la branche + du condensateur. Et nous faisons de même avec les branches -.

Puis nous brasons la branche + du condensateur à l’entrée du régulateur, et la branche – à la masse.

Finalement, nous relions la branche de sortie du régulateur au la VCC du connecteur USB femelle 5V. Et la masse du régulateur à la masse du connecteur.

Etape 2 : conception du support du circuit

Pour assembler notre planche à notre rotor, nous choisissons de réaliser un support qui retiendra le moteur et le fixera à la planche. Cette planche est elle-même fixée au mât. L’arbre du moteur sera lui lié au moyeu.

Pour ce faire, nous utilisons SOLIDWORKS afin de créer un support ressemblant à l’image ci-contre.

Le support dépend de la taille de notre planche, de la taille du moteur et de la longueur de l’arbre. Nous avons aussi extrudé des cercles du diamètre de nos vis à bois pour faciliter la fixation à la planche. Et le tour est joué.

etape 3 : conception des pâles et du moyeu

Pour faire le rotor, c’est à dire les pâles et le moyeu, nous avons utiliser l’imprimante 3D. Or il a fallu d’abord faire la conception grâce à SOLIDWORKS. Nous avons cherché le profil de pâle le plus optimal : le profil NACA 6409. Et nous l’avons reproduis dans le logiciel de conception. Puis avec on balaye cette figure pour avoir une pâle plus fine à son extrémité et on la lisse.

Ensuite il nous fallait en imprimer 3 : nombre de pâles idéal qui observe le meilleur rendement et qui évite d’avoir trop de perturbations entre les pâles.

Figure 6 : Image des trois pâles imprimées

Etape 4 : Decoupe du bois

La découpe du bois fut plutôt simple. Il nous fallait une surface plane pour assembler notre mât et la planche. Alors on a découpé notre mât par la moitié sur une longueur de 14 cm, ce qui correspond à la largeur de la planche. C’est cette planche qui permettra de guider l’éolienne et de l’orienter face au vent.

Figure 7 : Image du mât découpé

Etape 5 : assemblage

L’assemblage se fait lui même en plusieurs étapes : il faut mesurer et percer le bois, visser la planche au mat, visser le support à la planche et lier le rotor au moteur.

Ainsi nous avons d’abord percé la planche puis nous l’avons vissée au mât.

Figure 8 : La planche vissée au mât

Puis nous avons lié les pâles au moyeu avec de la colle forte. Et de la même manière nous avons fixé le moyeu à l’arbre. Afin que ce dernier soit entraîné par la rotation des pâles.

Figure 9 : Le rotor fixé à l’alternateur

Enfin nous avons vissé le support à la planche, à l’aide de 4 vis et de 4 écrous.

Conclusion

Pour conclure, cette éolienne low-tech est plutôt rapide à faire, elle n’utilise pas beaucoup de matériaux neufs mais a un système électrique insuffisant pour charger un téléphone. A notre plus grand regret.

Figure 11 : Vidéo de l’éolienne en rotation

Sean GALLAGHER, Maxime HERBRETEAU, Léane NEVEU

TP Lego: Transmission de Puissance

Présentation

Bonjour à toutes et à tous, nous sommes Damien, Mathieu, Martin et Titouan ,quatre étudiants en deuxième année de cycle préparatoire à Polytech Angers. Cet article du blog est dédié à la présentation de notre projet que nous avons dû réaliser lors du quatrième semestre de notre cycle préparatoire.

Dans quel but ?

Le but final de notre projet est de créer des séances de travaux pratiques qui serviront de support à la matière Analyse des systèmes mécaniques, une matière qui est enseigné au premier semestre de la deuxième année. Ces TP porteront sur la notion de Transmission de Puissance, un chapitre de cette matière et plus particulièrement sur la transmission par engrenages. Pour cela, nous avons à disposition une grande quantité de boîtes Lego de type Mindstorms NXT et EV3:

Notre objectif est d’utiliser ce matériel afin d’expliquer le plus simplement et efficacement possible les différentes notions du chapitre aux futurs PEIP2. Ce sont des notions que nous-même avons pu apprendre au cours du semestre 3 dans le cours d’Analyse des systèmes mécaniques. Notre professeur réfèrent est Monsieur Verron et nous avons eu 100 heures dans notre emploi du temps pour le réaliser.

Notre plan d’attaque

En sachant qu’il n’y a pas de cours magistraux dans cette matière et que le cours est expliqué au fur et à mesure des séances de TD, nous avons décidé de réaliser 2 TP d’1h20. Le but étant d’en avoir un en début de chapitre avec les notions que nous jugeons simples et fondamentales. Puis une seconde séance en fin de chapitre un peu plus théorique sur des principes plus complexes.

Travaux réalisés

Dans le premier TP, nous nous sommes surtout concentrés sur les formules liant le rapport de transmission entre 2 engrenages et d’autres paramètres comme le nombre de dents des 2 engrenages, leur rayon respectif, la vitesse de rotation de l’axe d’entrée et de sortie…

Formules rapport de transmission

En effet, lorsqu’un engrenage en entraîne un autre, étant donné qu’ils ne sont pas de la même taille, il y aura l’existence d’un rapport entre ces 2 roues dentées que l’on appelle rapport de transmission. Si celui-ci est supérieur à 1, on parlera de rapport multiplicateur et si celui-ci est inférieur à 1, on parlera de rapport de réduction. Nous avons donc mis en avant ce rapport à travers différents petits montages, certains seront à refaire par les étudiants alors que d’autres seront déjà montés pour que les étudiants puissent faire des mesures directement dessus. Voici un aperçu des questions posées dans ce TP1:

Montage pour calculer et comprendre le rapport de transmission

Pour le montage ci dessus, les étudiants doivent dans un premier temps compter le nombre de dents des 2 roues dentées. Ceci fait, la consigne est la suivante : compter le nombre de tours que fait la grande roue pour 10 tours du pignon (petite roue). Ils trouveront alors, grâce à cette manipulation le rapport de transmission. Après cela, ils en déduiront la formule qui lie le rapport de transmission et le nombre de dents des 2 engrenages et en auront terminé avec ce premier atelier.
Par la suite, ils essaieront de démontrer les autres formules avec d’autres ateliers où ils pourront utiliser des outils qu’ils n’ont peut-être jamais utilisés comme le tachymètre qui permet de mesurer la vitesse de rotation des objets en mouvement.
Pour en savoir plus sur ce premier TP, vous pouvez le retrouver en format pdf via ce lien.
Pour réaliser ce TP, nous avons dû travailler sur le côté organisationnelle en formant des petits groupes au sein de la classe pour favoriser l’apprentissage. Découlant de cela, on a créé plusieurs ateliers afin que les groupes puissent tourner et apprendre les différents principes. Pour se faire, nous avons dû jouer sur le temps de ces ateliers afin qu’il y ait un bon déroulement de la séance, une bonne fluidité, sans attente provoquant des pertes de temps.

Pour le deuxième TP que nous avons décidé de placer en fin de chapitre, nous avons voulu approfondir les notions de couple et de rendement. En ce qui concerne le premier atelier par exemple, nous voulons leur montrer l’impact de la distance entre l’axe de rotation d’un bras de levier et une masse sur le couple. En effet vous n’êtes pas sans savoir qu’il est plus facile d’ouvrir une porte si on la pousse du côté extérieur que si on la pousse proche de son axe de rotation. Et bien là c’est le même principe! En accrochant une masse à un bras de levier, on remarque que le moteur n’arrive pas à soulever celle-ci si elle est placée loin du centre de rotation car le moteur n’a pas assez de force (couple).

Image du bras de levier accroché à un réducteur (2 transmissions par engrenages avec un rapport de transmission inférieur à 1 donc réducteur)

Ensuite, nous sommes passés sur des notions plus complexes telles que la variation des masses qu’un treuil peut soulever en faisant varier la taille des tambours (= le cylindre où s’enroule la ficelle qui soulève la masse) que nous avons réaliser en CAO (3D). Cet atelier repose sur le même principe que précédemment mais avec des tambours de rayons différents. Encore une fois si vous voulez en savoir plus sur les étapes de réalisation des ateliers de ce TP2, vous pouvez suivre ce lien afin d’accéder à la version pdf.
Enfin concernant le troisième atelier, le but est de faire calculer aux étudiants le rendement de différents engrenages pour qu’ils comprennent que la transmission de puissance s’accompagne également de pertes car dans la vie réelle, il n’y a jamais de contacts « parfaits ».

Montage pour calculer le rendement des engrenages” 

Problèmes rencontrés

Bien évidemment ça n’aurait pas été aussi drôle si nous avions tout réussi du premier coup ! Alors, oui, nous avons rencontré un certain nombre de problèmes/difficultés au cours de notre conception tels que :
– La répartition des groupes sur les différentes activités du TP
– L’optimisation du nombre d’étudiants par groupe pour qu’ils apprennent le mieux possible tout en respectant les contraintes matérielles
– Le respect des contraintes de temps (1h20 par TP)
– La structuration des TP
– Comment calculer le rendement du moteur Lego
– Quantifier les pertes de puissance sur un système mécanique
– Créer des montages Lego permettant de démontrer des formules théoriques

Comment les avons-nous résolu ?

C’est sûrement sur la résolution de nos problèmes que nous avons appris le plus. Par exemple, pour calculer les rendements, nous avons dû passer par une grosse étape électricité/électronique :

Montage : alimentation + montage électrique + montage Lego pour calculer les rendements

Alors que nous n’avions quasiment aucune connaissances en électronique, nous avons pu apprendre comment câbler la breadboard, manipuler l’alimentation et relever les données nécessaires (ici le courant) pour nos calculs. Cette étape de calcul de rendements nous a pris beaucoup de temps, mais elle aura été nécessaire pour la conception du TP et aura été une expérimentation très riche pour nos connaissances personnelles.

Conclusion

Nous avons réussi à fournir 2 TP, qui, nous en sommes convaincus, permettront aux PEIP2 de l’année prochaine et des autres années de comprendre le plus aisément possible les différentes notions de transmission de puissance. Ce projet nous a permis de travailler en groupe et de trouver des solutions aux différents problèmes rencontrés ou bien de simplement les contourner pour arriver à notre fin. Nous avons également pu approfondir les notions en mécanique que nous connaissions déjà et utiliser des outils de mesure que nous n’avions jamais utilisé auparavant tel que le tachymètre pour mesurer la vitesse de rotation en tours par minute.

Nous avons également travaillé sur l’esthétique de ces TP, car en tant qu’étudiant, nous savons bien qu’un TP bien structuré avec des explications claires sur le matériel utilisé est plus attrayant et donne plus envie d’apprendre.

Nous vous remercions de nous avoir lu et espérons de tout cœur que nous avons réussi à attiser votre curiosité sur la notion de la Transmission de Puissance!

PS: Quelques chaînes Youtube intéressantes avec des expérimentations Lego:
Brick Technology
Lego Technic Mastery
Brick Experiment Channel

Création d’un carrousel simplifié (calculs RDM)

Cher lecteur, Chère lectrice,

Nous sommes trois étudiants en PeiP2-A (deuxième année de classe préparatoire intégrée) à l’école d’ingénieurs Polytech Angers, et c’est à travers cet article que nous allons vous résumer et vous expliquer notre travail de groupe.

Commençons d’abord par nous présenter.
Nous sommes Alexi Schmid, Virgile Siegler et Tanguy Moriceau, âgés de vingt ans et futurs ingénieurs.

Comme annoncé précédemment, nous avons eu le plaisir de travailler tous les trois en groupe durant notre dernier semestre de classe préparatoire, sur un projet de conception. Il y avait beaucoup de choix possibles (vraiment beaucoup) et nous avons choisi de travailler sur la conception d’un carrousel simplifié.

Image 1 : Nous avons travaillé à la conception d’un carrousel comme celui-ci (mais en plus simple parce que là, il y a trop de chaises).

Image 1 : Nous avons travaillé à la conception d’un carrousel comme celui-ci (mais en plus simple parce que là, il y a trop de chaises).

Pourquoi un tel choix ? Nous voulions tester nos capacités et compétences dans des domaines spécifiques. Dans notre cas, ces domaines principaux étaient la résistance des matériaux et l’analyse des systèmes mécaniques (pour plus de précision sur ces sujets, rendez-vous au bas de l’article).

Des modules à l’école nous ont donnés des notions dans ces domaines, mais ce projet de conception n’avait rien à voir avec ce qu’on a fait en cours. Nous étions au maximum en autonomie et devions donc trouver toutes les solutions par nous-mêmes.
Ainsi, ce projet était pour nous un moyen de nous améliorer sur des sujets où nous n’étions pas forcément à l’aise.

1) Présentation du projet et du cahier des charges

L’objectif du projet est clair : concevoir un carrousel simplifié à l’aide de calculs de résistance des matériaux et des notions acquises durant les quatre semestres d’études.
Pour ce qui est du cahier des charges, il y avait différentes conditions à respecter, comme la vitesse maximale de rotation du poteau central (imposée à trente tours par minute), le nombre d’enfants pouvant s’asseoir dans le manège (quatre enfants maximum, tous assis sur des sièges différents et pesant environ quarante kilos chacun) ou même des dimensions de pièces (comme celle du poteau central, qui devait être d’une hauteur de deux mètres).
Enfin, le carrousel devait être le plus léger possible, afin de réduire les coûts matériels.

Image 2 : Schéma simplifié du carrousel (en jaune les quatre poutres supérieures, en rouge les sièges, en vert clair le poteau central et la courroie transmettant la rotation, en bleu le châssis, en vert foncé le couvercle du châssis et en violet le moteur, relié au réducteur).

Image 2 : Schéma simplifié du carrousel (en jaune les quatre poutres supérieures, en rouge les sièges, en vert clair le poteau central et la courroie transmettant la rotation, en bleu le châssis, en vert foncé le couvercle du châssis et en violet le moteur, relié au réducteur).

2) Le travail réalisé

Pour réussir ce projet, nous avions deux tâches majeures à faire : la première, était de dimensionner l’intégralité des pièces du manège et de choisir les composants permettant de les lier entre elles. La seconde tâche était de choisir un moteur adapté et de concevoir un réducteur, nécessaire pour réduire la vitesse de rotation du moteur (rappelez-vous que notre manège doit tourner à la vitesse maximale de trente tours par minute !)

Nous avons naturellement commencé par faire un schéma du système à concevoir (voir Image 2), ce qui nous a permis de visualiser le carrousel et de faire ressortir ses points-clés (numérotés en gras sur l’Image 2).

Pour continuer, nous nous sommes engagés sur les calculs des forces appliquées aux quatre sièges. Celles-ci comprenaient la force centrifuge, la résistance à l’air, le poids et les forces radiales et tangentielles. Enfin, nous avons calculé l’angle α, situé entre le câble soutenant le siège et la
perpendiculaire au sol (cet angle est aussi représenté sur l’Image 2).

Cet angle particulier change de valeur suivant la vitesse de rotation du manège. En effet, plus ce dernier tourne vite et plus l’angle α est élevé (car le siège subira une force centrifuge plus forte).
Nous avons donc calculé la valeur de cet angle pour la vitesse de rotation maximale, valant trente tours par minute.
Ainsi, à vitesse maximale, l’angle α vaut 62°.

Grâce aux valeurs des forces précédemment calculées et grâce à cet angle α désormais connu, nous avons mis en place différents torseurs de forces (si cette notion de torseur ne vous est pas familière, je vous renvoie ici pour plus d’explications sur leurs principes), aux points-clés du carrousel.

Avec ces torseurs nouvellement définis, nous avons utilisé le Principe Fondamental de la Statique (que vous êtes censés savoir maîtriser !) aux points-clés du manège, dans le but de déterminer, dans notre repère cartésien (repère tridimensionnel classique, dépendant de trois variables : x pour la longueur, y pour la largeur et z pour la hauteur), les valeurs des forces s’appliquant en ces mêmes points.

En connaissance des différentes forces, nous avons utilisé plusieurs formules issues de notre module de Propriétés et Résistance des Matériaux, pour déterminer les épaisseurs et les diamètres minimaux de pièces composant notre carrousel.
En faisant cela, nous avons aussi respecté une autre contrainte de notre cahier des charges, qui imposait une contrainte admissible de 120 MPa ou de 120 Newtons par millimètre carré (c’est-à-dire que le matériau en question doit pouvoir résister à une force de 120 Newtons, appliquée sur un millimètre carré) pour toutes les pièces.
Par exemple, ce sont avec ces formules que nous avons calculé le diamètre minimal à adopter pour le poteau central. Nous voulions que ce poteau soutienne tout le haut de la structure, mais avec le diamètre le plus faible possible, toujours dans le but de diminuer les coûts de production (il n’y a pas de petites économies !).

Pour continuer avec le poteau central, c’est en calculant son diamètre minimal que nous avons choisi les roulements (à partir d’une documentation issue de constructeurs) pouvant permettre sa rotation au sein de son châssis.
Suite à cela, nous avons de nouveau utilisé le Principe Fondamental de la Statique et les formules de notre module pour déterminer les diamètres intérieur (qui est en fait le diamètre extérieur du roulement défini précédemment) et extérieur adéquats du châssis.
Enfin, nous avons choisi une butée (l’élément se plaçant sous le poteau central, dans le châssis, et permettant la rotation) parmi celles qui nous étaient proposées.

Suite à cela, nous devions choisir les composants permettant de fixer les pièces entre elles, dans des liaisons d’encastrements, en sachant que les composants les plus efficaces pour faire cela sont des vis.
Nous avons donc calculé les forces et les contraintes de cisaillement et de traction (voir au bas de l’article pour plus de précisions) que subiront les vis, dans le but de déterminer leurs caractéristiques.
Celles-ci trouvées, nous avons choisi les vis appropriées (toujours grâce à la documentation) qui permettaient de maintenir le carrousel.

Par la suite, il nous fallait déterminer la courroie et la poulie à utiliser pour transmettre le mouvement de rotation, du réducteur jusqu’au poteau central.
Nous avons facilement choisi ces éléments grâce à nos résultats précédents, à la documentation et aux formules qui nous ont été données par notre professeur encadrant.
Pour finir, nous avons calculé le poids combiné de la poulie et de la courroie, ce qui a achevé la première partie de notre projet de conception.

La seconde partie de notre projet consistait à concevoir le réducteur et nous l’avons commencée en calculant la puissance nécessaire pour obtenir la vitesse de rotation maximale de trente tours par minute.
Après un simple calcul, nous avons trouvé la puissance minimale requise et avons, par la même occasion, choisi le moteur le plus adapté à notre cas de figure.

Ensuite, avec ce moteur, nous sommes passés à la conception du réducteur.
Nous avons calculé le taux de réduction de l’ensemble, c’est à dire le nombre de fois que l’on va réduire la vitesse initiale de sortie du moteur.
Par exemple, si notre moteur tourne à une vitesse de 1600 tours par minute et que l’on impose un taux de réduction de 4 au réducteur, la vitesse de rotation qui sera mesurée après ce dernier, sera de 400 tours par minute.

Avec ce taux de réduction et la documentation, nous avons déterminé qu’il fallait concevoir un réducteur à trois étages.

Image 3 : Schéma du réducteur à trois étages (représentant les quatre arbres ou axes, les trois engrenages et les forces s’appliquant sur ces derniers).

Image 3 : Schéma du réducteur à trois étages
(représentant les quatre arbres ou axes, les trois
engrenages et les forces s’appliquant sur ces derniers).

Pour continuer, nous devions trouver le nombre de dents adéquat pour chacune des roues et chacun des pignons. Pour faire cela, nous avons utilisé le solveur du logiciel Excel.
Nous avions plusieurs conditions à imposer, comme un nombre minimal de dents, le taux de réduction devait être compris dans un intervalle de 20% autour de sa valeur calculée, la masse de l’ensemble devait être la plus faible possible, etc.

Grâce aux calculs du solveur, nous avons obtenu les nombres optimaux de dents.
Ceci nous a ensuite permis de calculer le module de chacun des trois engrenages, un paramètre relatif à la périodicité et à la taille de ces mêmes dents.
Après avoir obtenu les modules, nous les avons normalisés (rapprochés d’une valeur entière normée et plausible).

Ensuite, comme nous avions toutes les caractéristiques nécessaires des engrenages, nous avons calculé les forces radiales et tangentielles (représentées sur l’Image 3) s’appliquant sur eux.
En effet, lorsque un pignon tourne, il va appliquer une certaine force sur la roue située au-dessous de lui, provoquant ainsi le phénomène de rotation. Ce sont donc ces forces que nous avons cherché à calculer.
C’est en utilisant à nouveau le Principe Fondamental de la Statique et des torseurs, que nous avons trouvé les valeurs des forces. Après avoir additionné ces dernières en respectant leur orientation dans notre repère cartésien, nous avons finalement obtenu trois forces générales, appliquées sur
chaque engrenage.

En nous rappelant qu’un de nos objectifs était de diminuer au maximum la masse du réducteur, nous avons rapprochés les engrenages entre eux. C’est donc en considérant la largeur des pignons, des roues et des roulements placés aux extrémités des arbres (roulements assurant la rotation des quatre arbres) que nous avons pu établir les distances minimales (appelées entretoises) entre tous les éléments intérieurs du réducteur.

Avec ces distances minimales, nous avons encore une fois utilisé le Principe Fondamental de la Statique et nos formules de Propriétés et Résistance des Matériaux, sur chacun des quatre arbres.
Cela nous a permis de connaître les valeurs des contraintes (principalement la flexion) subies par ces derniers. Enfin, c’est avec ces dernières valeurs calculées que nous avons déterminé le diamètre minimal à adopter pour chaque arbre.

Tout ceci achevé, il nous restait à choisir les différents composants nécessaires au bon fonctionnement du réducteur. C’est après avoir calculé les différentes vitesses de rotation des arbres, les couples transmis (le mouvement de rotation) et les forces appliquées sur chaque arbre, que nous avons choisi les roulements (différents de ceux utilisés plus haut, qui avaient été arbitrairement choisis, sans connaître les diamètres des arbres).
Nous avons ensuite sélectionné les épaulements (pièce mécanique servant à bloquer les roulements, pour leur empêcher tout mouvement) à partir des caractéristiques des roulements choisis.

Comme nous avons changé le type de roulement (rappelez-vous que nous avons arbitrairement considéré des roulements, au moment de calculer les entretoises entre tous les éléments intérieurs au réducteur !), nous avons dû recalculer ces distances minimales avec nos nouveaux roulements et nos épaulements.

Suite à cela, nous avons choisi d’après les diamètres minimaux des arbres, huit anneaux élastiques afin de maintenir les roulements et les arbres en place.
Pour terminer, nous avons choisi des clavettes (pièce mécanique se plaçant entre un pignon ou une roue et l’arbre en rotation auquel il/elle appartient) grâce à des formules spécifiques, décrivant la longueur minimale de ces dernières. Il s’agissait ici de calculer les contraintes que subiront ces six clavettes, pour chaque engrenage, afin de déterminer la longueur minimale à adopter, pour obtenir une résistance optimale.

3) Conclusion de notre projet de conception

Ce projet de conception, que nous avons réalisé durant notre quatrième semestre d’études, nous aura permis de réellement nous familiariser sur des sujets, au premier abord, compliqués.
Comme précisé au début de cet article, nous n’étions pas vraiment à l’aise avec les notions vues dans notre module de Propriétés et Résistance des Matériaux, ce que nous souhaitions donc changer.
Concevoir ce carrousel simplifié a été un véritable défi, où nous avons pu nous surpasser, tant sur le plan théorique que sur le plan humain.
Travailler avec d’autres personnes sur un projet commun est quelque chose de très enrichissant.
Cela nous permet d’exprimer notre point de vue, mais surtout de comprendre et de s’ouvrir à d’autres visions différentes de la notre : ce qui reste l’une des qualités les plus importantes d’un futur ingénieur.
______________________________________________________________________

Résistance des matériaux : discipline permettant d’étudier le comportement de différents matériaux au niveau local (sur un petit volume d’une pièce), de façon à étendre ce même comportement au niveau global (c’est-à-dire, à l’entière pièce considérée) et de calculer de façon détaillée les contraintes et les déformations subies par un matériau sous l’effet d’une sollicitation particulière (par exemple, le poids).

Analyse des systèmes mécaniques : discipline permettant l’étude de différents systèmes mécaniques comme un moteur de voiture, par exemple) à partir d’un schéma fonctionnel. Cette discipline est aussi utile pour déterminer les liaisons reliant des pièces entre elles et sert à choisir les composants qui permettent d’obtenir une telle liaison (un roulement à billes autorise une liaison pivot). Enfin, cette discipline intervient dans les transmissions de puissance, à travers des engrenages notamment.

Contrainte de cisaillement : contrainte mécanique appliquée de manière parallèle ou tangentielle à la face d’un matériau considéré.

Contrainte de traction : contrainte mécanique appliquée de manière perpendiculaire à deux faces opposées d’un matériau considéré, de façon à l’étirer pour mesurer le moment de rupture.

Crédits de l’Image 1 : Swing ride in Santa Cruz, the county seat and largest city of Santa Cruz County, California, photographie par Carol Highsmith, le 9 juin 2012, collection de la Bibliothèque du Congrès des États-Unis d’Amérique, œuvre placée dans le domaine public.

Les Image 2 et Image 3 ont été respectivement créées par Virgile Siegler et Alexi Schmid, dans le cadre de ce projet de conception.