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Abstract. We explore various Bayesian approaches to estimate partial Gaussian graphical
models. Our hierarchical structures enable to deal with single-output as well as multiple-
output linear regressions, in small or high dimension, enforcing either no sparsity, sparsity,
group sparsity or even sparse-group sparsity for a bi-level selection through partial cor-
relations (direct links) between predictors and responses, thanks to spike-and-slab priors
corresponding to each setting. Adaptative and global shrinkages are also incorporated in
the Bayesian modeling of the direct links. An existing result for model selection consistency
is reformulated to stick to our sparse and group-sparse settings, providing a theoretical guar-
antee under some technical assumptions. Gibbs samplers are developed and a simulation
study shows the efficiency of our models which give very competitive results, especially in
terms of support recovery. To conclude, a real dataset is investigated.
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1. Introduction and Motivations

This paper is devoted to the Bayesian estimation of the partial Gaussian graphical models.
Graphical models are now widespread in many contexts, like image analysis, economics or
biological regulation networks, neural models, etc. A graphical model for the d-dimensional
Gaussian vector Z ∼ Nd(µ,Σ) is a model where the conditional dependencies between the
coordinates of Z are represented by means of a graph. We refer the reader to the handbook
recently edited by Maathuis et al. [18] for a very complete survey of graphical models theory,
or to Chap. 7 of Giraud [12] for a wide introduction to the subject. It is well-known that
the partial correlation between Zi and Zj satisfies

Corr(Zi, Zj | Z̸= i, j) = − Ωij√
ΩiiΩjj

where Ω = Σ−1 ∈ S d
++ is the precision matrix of Z (the notation S d

++ for the cone of
symmetric positive definite matrices of dimension d is used in all the paper). A fundamental
consequence of this is that there is a partial correlation between Zi and Zj if and only
if the (i, j)-th element of Ω is non-zero. The sparse estimation of Ω is therefore a major
issue for variable selection in high-dimensional studies, which has given rise to a substantial
literature, see e.g. the seminal work of Meinshausen and Bühlmann [20]. This logically
led numerous authors to investigate interesting properties under various kind of hypotheses,
estimation procedures and penalties. Let us mention for example the optimality results
obtained by Cai and Zhou [5] and the penalized estimations of Yuan and Lin [32], Rothman
et al. [26], Banerjee et al. [2], Cai et al. [4] or Ravikumar et al. [24], all coming with
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theoretical guarantees, algorithmic considerations and real world examples. Besides, the
famous graphical Lasso of Friedman et al. [10] has become an essential tool for dealing with
precision matrix estimation. Perhaps more attractive to us since focusing on each entry of the
precision matrix (no longer taken as a whole), the approach of Ren et al. [25] is remarkable
and will serve as a basis for comparison in our simulation study. The Bayesian inference
counterpart has been developed as well, it is e.g. the subject of Chap. 10 of Maathuis et al.
[18] where various Wishart-type priors are considered for Ω, see also Li et al. [15] or Gan et
al. [11] for spike-and-slab approaches and all references within.

Suppose now that we deal with a multivariate linear regression of the form

Y = XB + E

where Y ∈ Rn×q is a matrix of q-dimensional responses of which k-th row is Y t
k , X ∈ Rn×p is a

matrix of p-dimensional predictors of which k-th row is X t
k , B ∈ Rp×q contains the regression

coefficients and E ∈ Rn×q is a matrix-variate Gaussian noise. The Partial Gaussian Graphical
Model (PGGM), developped e.g. by Sohn and Kim [27] or Yuan and Zhang [33], appears as a
powerful tool to exhibit relations between predictors and responses that exist through partial
correlations (called from now on ‘direct links’, as opposed to ‘indirect links’ resulting from
correlations). Indeed, assume that the couple (Yk, Xk) ∈ Rq+p is jointly normally distributed
with zero mean, covariance Σ and precision Ω. Then, the block decomposition given by

Ω =

(
Ωy ∆
∆t Ωx

)
with Ωy ∈ S q

++, ∆ ∈ Rq×p and Ωx ∈ S p
++ leads to Yk |Xk ∼ Nq(−Ω−1

y ∆Xk, Ω
−1
y ). This is

a crucial remark because one can see that the multiple-output regression Yk = B t Xk + Ek

with Gaussian noise Ek ∼ Nq(0, R) may be reparametrized with

(1.1) B = −∆t Ω−1
y and R = Ω−1

y .

A large volume of literature exists for the sparse estimation of B with arbitrary group
structures (see e.g. Li et al. [14] or Chap. 6 of Giraud [12]), but we will not tackle this issue
in our study. At least not frontally but indirectly, since the latter relations show that an
estimation of B is possible through the one of the pair (Ωy,∆). Whereas B contains direct
and indirect links between the predictors and the responses (due e.g. to strong correlations
among the variables), ∆ is clearly more interesting from an inferential point of view for it
only contains direct links. However, while the estimation of (Ωy,∆) appears to be essential,
it usually depends on the accuracy of the estimation of the whole precision matrix, which,
in turn, may be strongly affected by the one of Ωx. For example, the graphical Lasso of
Friedman et al. [10] involves maximizing the log-likelihood penalized by the elementwise
ℓ1 norm of Ω. For multiple-output high-dimensional regressions where generally p ≫ q, we
understand that a significant bias is likely to result from the large-scale shrinkage. Another
substantial advantage of the partial model is that we can override this issue by computing a
new objective function in which Ωx has disappeared, i.e. the penalized log-likelihood

Ln(Ωy,∆) = − ln det(Ωy) + tr(Sy Ωy) + 2 tr(S t
yx∆)

+ tr(Sx ∆
tΩ−1

y ∆) + λ pen(Ωy) + µ pen(∆)(1.2)

where Sx ∈ S p
++ and Sy ∈ S q

++ are the empirical variances of the responses and the predictors,
respectively, and where Syx ∈ Rq×p is the empirical covariance, computed on the basis of

2



a set of n observations. This can be obtained either by considering the multiple-output
Gaussian regression scheme, or, as it is done by Yuan and Zhang [33], by eliminating Ωx

thanks to a first optimization step in the objective function of the graphical model. The
usual convex penalties are elementwise ℓ1 norms, possibly deprived of the diagonal terms for
Ωy. This paved the way to the recent study of Chiquet et al. [6] where the authors replace
the penalty on Ωy by a structuring one enforcing various kind of sparsity patterns in ∆, and
to the one of Okome Obiang et al. [21] in which some theoretical guarantees are provided
for a slightly more general estimation procedure.

However, to the best of our knowledge, the Bayesian approach for the PGGM is a new
research topic. Given the outputs gathered in Y and the predictors gathered in X, the
objective of this paper is the Bayesian estimation of the direct links and the precision matrix
of the responses. This is inspired by the ideas of Xu and Ghosh [29] for the single-output
setting (q = 1), and by the ones of Liquet et al. [17] for the multiple-output setting (q > 1).
Taking advantage of the relations (1.1), we consider that a Gaussian prior for B must remain
Gaussian for ∆ (with a correctly updated variance), and that an inverse Wishart prior for
R merely becomes a Wishart one for Ωy. Yet, despite these seemingly small changes in the
design of the priors, we will see that the resulting distributions are completely different.
The hierarchical models that we are going to study all come from this working base, but let
us point out that a wide variety of refinements exists in the recent literature for Bayesian
sparsity, like the grouped ‘horseshoe’ of Xu et al. [30], the ‘aggressive’ multivariate Dirichlet-
Laplace prior of Wei et al. [28], the theoretical results for group selection consistency of
Yang and Narisetty [31] or even the extension of the Bayesian spike-and-slab group selection
to generalized additive models of Bai et al. [1], all related to the regression setting but
that might also be investigated for PGGMs. To enforce various types of sparsity in ∆ for
high-dimensional problems, we decided to make use of spike-and-slab priors, with a spike
probability guided by a conjugate Beta distribution.

The paper is organized as follows. Sections 2, 3 and 4 are dedicated to the study of
our hierarchical models enforcing either no sparsity, sparsity, group sparsity or sparse-group
sparsity in the direct links, respectively, according to the terminology of Sec. 2.1 of Giraud
[12]. In particular, we will see that our bi-level selection clearly diverges from the strategy
of Liquet et al. [17]. We also adapt the reasoning of Yang and Narisetty [31] to establish
group selection consistency under some technical assumptions and an appropriate amount
of sparsity. Section 5 is devoted to the conditional posterior distributions of the parameters
in order to implement Gibbs samplers that are tested in Section 6. This empirical section
is focused on a simulation study first, to evaluate and compare the efficiency of the models,
then a real dataset is treated, and a short conclusion ends the paper. But, firstly, let us give
some examples of what exactly we mean by ‘sparse’, ‘group-sparse’ and ‘sparse-group-sparse’
settings, and let us summarize the definitions that we have chosen to retain for the well-
known distributions as well as for the less usual ones, in order to avoid any misinterpretation
of our results and proofs.

Example 1.1. To explain a set of phenotypic traits, suppose that we investigate a large col-
lection of genetic markers spread over twenty chromosomes. For coordinate sparsity (‘sparse’
setting), only a few markers are active. For group sparsity (‘group-sparse’ setting), the mark-
ers are clustered into groups (formed by chromosomes) and only a few of them are active.
For sparse-group sparsity (‘sparse-group-sparse’ setting), only a few chromosomes are active
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and they are sparse, the result is a bi-level selection (chromosomes and markers). This will
be the context of our example on real data (Section 6.2).

Definition 1.1 (Gaussian). The density of X ∈ Rd1×d2 following the matrix normal distri-
bution MNd1×d2(M, Σ1, Σ2) is given by

p(X) =
1

(2π)
d1 d2

2 |Σ1|
d2
2 |Σ2|

d1
2

exp

(
−1

2
tr
(
Σ−1

2 (X −M)t Σ−1
1 (X −M)

))
where M ∈ Rd1×d2, Σ1 ∈ S d1

++ and Σ2 ∈ S d2
++. When d2 = 1, this is a multivariate normal

distribution Nd(µ, Σ) with d = d1, µ = M and Σ = Σ−1
2 Σ1, having density

p(X) =
1

(2π)
d
2 |Σ| 12

exp

(
−1

2
(X − µ)tΣ−1(X − µ)

)
where µ ∈ Rd and Σ ∈ S d

++.

Definition 1.2 (Generalized Inverse Gaussian). The density of X ∈ S d
++ following the

matrix generalized inverse Gaussian distribution MGIGd(ν, A, B) is given by

p(X) =
|X|ν− d+1

2∣∣A
2

∣∣ν Bν

(
A
2
, B
2

) exp

(
−1

2
tr
(
AX−1 +BX

))
1{X ∈ S d

++}

where ν ∈ R, A ∈ S d
++, B ∈ S d

++ and Bν is a Bessel-type function of order ν. When d = 1,
this is a generalized inverse Gaussian distribution GIG(ν, a, b) with a = A and b = B,
having density

p(X) =
Xν−1(

a
2

)ν
Bν

(
a
2
, b
2

) e− a
2X

− bX
2 1{X > 0}

where ν ∈ R, a > 0 and b > 0.

Definition 1.3 (Wishart/Gamma/Exponential). The density of X ∈ S d
++ following the

matrix Wishart distribution Wd(u, V ) is given by

p(X) =
|X|u−d−1

2

2
d u
2 Γd

(
u
2

)
|V |u2

exp

(
−1

2
tr
(
V −1X

))
1{X ∈ S d

++}

where u > d − 1, V ∈ S d
++ and Γd is the multivariate Gamma function of order d. When

d = 1, this is a Gamma distribution Γ(a, b) with a = u
2
and 1

b
= 2V , having density

p(X) =
b aXa−1

Γ(a)
e−bX

1{X > 0}

where a > 0 and b > 0. The exponential distribution E(ℓ) is then defined as the Γ(1, ℓ)
distribution, for ℓ > 0.

Definition 1.4 (Beta). The density of X ∈ [0, 1] following the Beta distribution β(a, b) is
given by

p(X) =
Xa−1 (1−X) b−1

β(a, b)
1{0⩽X ⩽ 1}

where a > 0, b > 0 and β is the Beta function.

In all the paper, data and parameters are gathered in Θ = {Y,X,∆,Ωy, ν, λ, π} and, to
standardize, for any e ∈ Θ, we note Θe = Θ\{e}.
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2. The sparse setting

In this section, λi ∈ R is the i-th component of λ ∈ Rp, ∆i ∈ Rq is the i-th column of ∆
and Xi ∈ Rn stands for the i-th column of X (1 ⩽ i ⩽ p). Let us consider the hierarchical
Bayesian model, where the columns of ∆ are assumed to be independent, given by

(2.1)



Y |X,∆,Ωy ∼ MNn×q(−X∆tΩ−1
y , In, Ω

−1
y )

∆i |Ωy, λi, π
⊥⊥∼ (1− π)Nq(0, λi Ωy) + π δ0

λi
⊥⊥∼ Γ(α, ℓi)

Ωy ∼ Wq(u, V )
π ∼ β(a, b)

for i ∈ J1, pK, with hyperparameters α = 1
2
(q + 1), ℓi > 0, u > q − 1, V ∈ S q

++, a > 0
and b > 0. A general ungrouped sparsity is promoted in the columns of ∆ through the
spike-and-slab prior. In this mixture model, π is the prior spike probability and λ is an
adaptative shrinkage factor acting at the predictor scale (λi is associated with the direct
links between predictor i and all the responses). When ℓi = ℓ for all i, we will rather speak
of global shrinkage. The degree of sparsity will be characterized by the number N0 of zero
columns of ∆, that is

(2.2) N0 = Card(i, ∆i = 0) =

p∑
i=1

1{∆i =0}.

To implement a Gibbs sampler from the full posterior distribution stemming from (2.1), we
may use the conditional distributions given in the proposition below.

Proposition 2.1. In the hierarchical model (2.1), the conditional posterior distributions are
as follows.

− The parameter ∆ satisfies, for i ∈ J1, pK,

∆i |Θ∆i
∼ (1− pi)Nq(−siHi, si Ωy) + pi δ0

where

Hi = Ωy Y t Xi +
∑
j ̸= i

⟨Xi, Xj⟩∆j, si =
λi

1 + λi ∥Xi∥ 2

and
pi =

π

π + (1− π) (1 + λi ∥Xi∥ 2)−
q
2 exp

(
si H t

i Ω−1
y Hi

2

) .
− The parameter Ωy satisfies

Ωy |ΘΩy ∼ MGIGq

(
n− p+N0 + u

2
, ∆(Xt X+D−1

λ )∆t, Y tY+ V −1

)
where Dλ = diag(λ1, . . . , λp).

− The parameter λ satisfies, for i ∈ J1, pK,

λi |Θλi
∼ 1{∆i ̸=0} GIG

(
1

2
, ∆t

i Ω
−1
y ∆i, 2 ℓi

)
+ 1{∆i =0} Γ(α, ℓi).

− The parameter π satisfies

π |Θπ ∼ β
(
N0 + a, p−N0 + b

)
.
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Proof. See Section 5.1. □

Remark 2.1. The Bayesian Lasso, as introduced e.g. in Sec. 6.1 of [13] or in [22], assumes
a prior Laplace distribution for the regression coefficients conditional on the noise variance.
In our case, ∆i |Ωy, π is still a multivariate spike-and-slab (after integrating over λi), with a
slab following a so-called multivariate K-distribution (see [7]), which is a generalization of
the multivariate Laplace distribution. See e.g. Sec 2.1 of [17]. From this point of view, our
study is in line with the usual Bayesian regression schemes. Perhaps even more interesting,
going on with the idea of the authors, suppose that, for all 1 ⩽ i ⩽ p, ∆i = bi ∆

∗
i where ∆∗

i

follows the multivariate K-distribution described above and bi | π ∼ B(1− π) is independent
of ∆∗

i . Now, the sparsity in ∆ is not induced by a spike-and-slab strategy anymore but,
equivalently, by multiplying the slab part by an independent Bernoulli variable being 0 with
probability π. Then, it is possible to show that the negative log-likelihood of this alternative
hierarchical model is given, up to an additive constant that does not depend on ∆, by

1

2

∥∥∥(Y+ X∆t Ω−1
y ) Ω

1
2
y

∥∥∥2
F
+

p∑
i=1

ci

∥∥∥Ω− 1
2

y ∆∗
i

∥∥∥
F
+ ln

(
1− π

π

) p∑
i=1

bi

where ci > 0. We first recognize an ℓ2-type penalty but also an ℓ0-type penalty on ∆
(provided that π < 1

2
) since summing the bi amounts to counting the number of non-zero

columns in ∆. Consequently, there is a close connection between our hierarchical Bayesian
model and the regressions penalized by ℓ2 and ℓ0 norms, problems that are known to be very
hard to solve due to combinatorial optimization.

The particular case q = 1 is a very useful corollary of the proposition. Here, the direct
links form a row vector such that ∆t ∈ Rp with components ∆i ∈ R (1 ⩽ i ⩽ p), and the
precision matrix of the responses reduces to ωy > 0. According to the parametrization of
the distributions (see Section 1), the corresponding prior distribution of ωy is Γ(u

2
, 1
2 v
) for

u, v > 0 and the one of λi is E(ℓi) for ℓi > 0. The other priors are unchanged.

Corollary 2.1. In the hierarchical model (2.1) with q = 1, the conditional posterior distri-
butions are as follows.

− The parameter ∆ satisfies, for i ∈ J1, pK,

∆i |Θ∆i
∼ (1− pi)N (−si hi, si ωy) + pi δ0

where

hi = ωy ⟨Xi, Y⟩+
∑
j ̸= i

⟨Xi, Xj⟩∆j, si =
λi

1 + λi ∥Xi∥ 2

and

pi =
π

π + (1− π) (1 + λi ∥Xi∥ 2)−
1
2 exp

(
si h2

i

2ωy

) .
− The parameter ωy satisfies

ωy |Θωy ∼ GIG
(
n− p+N0 + u

2
, ∆(Xt X+D−1

λ )∆t, ∥Y∥ 2 +
1

v

)
where Dλ = diag(λ1, . . . , λp).
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− The parameter λ satisfies, for i ∈ J1, pK,

λi |Θλi
∼ 1{∆i ̸=0} GIG

(
1

2
,
∆ 2

i

ωy

, 2 ℓi

)
+ 1{∆i =0} E(ℓi).

− The parameter π satisfies

π |Θπ ∼ β
(
N0 + a, p−N0 + b

)
.

Proof. This is a consequence of Proposition 2.1. □

Note that we can also easily derive the Bayesian counterpart of the standard PGGM
adapted to the small-dimensional case, with no sparsity, by taking π = 0.

Corollary 2.2. In the hierarchical model (2.1) with π = 0, the conditional posterior distri-
butions are as follows.

− The parameter ∆ satisfies, for i ∈ J1, pK,

∆i |Θ∆i
∼ Nq(−si Hi, si Ωy)

where

Hi = Ωy Y t Xi +
∑
j ̸= i

⟨Xi, Xj⟩∆j and si =
λi

1 + λi ∥Xi∥ 2
.

− The parameter Ωy satisfies

Ωy |ΘΩy ∼ MGIGq

(
n− p+ u

2
, ∆(Xt X+D−1

λ )∆t, Y tY+ V −1

)
where Dλ = diag(λ1, . . . , λp).

− The parameter λ satisfies, for i ∈ J1, pK,

λi |Θλi
∼ GIG

(
1

2
, ∆t

i Ω
−1
y ∆i, 2 ℓi

)
.

Proof. This is a consequence of Proposition 2.1. □

In the simulation study of Section 6.1, Scen. 0, 1 and 2 are dedicated to the sparse setting.
The next section discusses the group sparsity in ∆.

3. The group-sparse setting

The predictors are now ordered in m groups of sizes κ1 + . . . + κm = p. For the g-th
group (1 ⩽ g ⩽ m), λg ∈ R is the g-th component of λ ∈ Rm, the covariate submatrix is
Xg ∈ Rn×κg and the corresponding slice of ∆ is ∆g ∈ Rq×κg . Let us consider the hierarchical
Bayesian model, where the columns of ∆ are assumed to be independent both within and
between the groups, given by

(3.1)



Y |X,∆,Ωy ∼ MNn×q(−X∆t Ω−1
y , In, Ω

−1
y )

∆g |Ωy, λg, π
⊥⊥∼ (1− π)MNq×κg(0, λg Ωy, Iκg) + π δ0

λg
⊥⊥∼ Γ(αg, ℓg)

Ωy ∼ Wq(u, V )
π ∼ β(a, b)
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for g ∈ J1,mK, with hyperparameters αg =
1
2
(q κg+1), ℓg > 0, u > q−1, V ∈ S q

++, a > 0 and
b > 0. A general group sparsity is promoted in the columns of ∆ through the spike-and-slab
prior at the group level. In this mixture model, π is the prior spike probability and λ is an
adaptative shrinkage factor acting at the group scale (λg is associated with the direct links
between the predictors of group g and all the responses). Likewise, when ℓg = ℓ for all g, we
will rather speak of global shrinkage. Now, the degree of sparsity will be characterized by
N0 given in (2.2), but also by the number G0 of zero groups of ∆, that is

(3.2) G0 = Card(g, ∆g = 0) =
m∑
g=1

1{∆g =0}.

To implement a Gibbs sampler from the full posterior distribution stemming from (3.1), we
may use the conditional distributions given in the proposition below.

Proposition 3.1. In the hierarchical model (3.1), the conditional posterior distributions are
as follows.

− The parameter ∆ satisfies, for g ∈ J1,mK,

∆g |Θ∆g ∼ (1− pg)MNq×κg(−Hg Sg, Ωy, Sg) + pg δ0

where
Hg = ΩyY t Xg +

∑
j ̸= g

∆j X t
j Xg, Sg = λg

(
Iκg + λg X t

g Xg

)−1

and
pg =

π

π + (1− π) |Iκg + λg X t
g Xg|−

q
2 exp

(
tr(H t

g Ω−1
y Hg Sg)

2

) .
− The parameter Ωy satisfies

Ωy |ΘΩy ∼ MGIGq

(
n− p+N0 + u

2
, ∆(Xt X+D−1

λ )∆t, Y tY+ V −1

)
where Dλ = diag(λ1, . . . , λ1, . . . , λm, . . . , λm) with each λg duplicated κg times.

− The parameter λ satisfies, for g ∈ J1,mK,

λg |Θλg ∼ 1{∆g ̸=0} GIG
(
1

2
, tr(∆t

g Ω
−1
y ∆g), 2 ℓg

)
+ 1{∆g =0} Γ(αg, ℓg).

− The parameter π satisfies

π |Θπ ∼ β
(
G0 + a, m−G0 + b

)
.

Proof. See Section 5.2. □

Note that Remark 2.1 still applies to this configuration, after some adjustments (the ℓ0-like
penalty is on the number of non-zero groups). Here again, the particular case q = 1 is a very
useful corollary. The direct links form a row vector such that ∆t ∈ Rp with groups ∆t

g ∈ Rκg

(1 ⩽ g ⩽ m), the precision matrix of the responses reduces to ωy > 0. According to the
parametrization of the distributions (see Section 1), the corresponding prior distribution of
ωy is Γ(u

2
, 1
2 v
) for u, v > 0, like in the ungrouped setting. The other priors are unchanged.

Corollary 3.1. In the hierarchical model (3.1) with q = 1, the conditional posterior distri-
butions are as follows.
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− The parameter ∆ satisfies, for g ∈ J1,mK,

∆t
g |Θ∆g ∼ (1− pg)Nκg(−Sg Hg, ωy Sg) + pg δ0

where

Hg = ωy X t
g Y+

∑
j ̸= g

X t
g Xj ∆

t
j, Sg = λg

(
Iκg + λg X t

g Xg

)−1

and

pg =
π

π + (1− π) |Iκg + λg X t
g Xg|−

1
2 exp

(
H t

g Sg Hg

2ωy

) .
− The parameter ωy satisfies

ωy |Θωy ∼ GIG
(
n− p+N0 + u

2
, ∆(Xt X+D−1

λ )∆t, ∥Y∥ 2 +
1

v

)
where Dλ = diag(λ1, . . . , λ1, . . . , λm, . . . , λm) with each λg duplicated κg times.

− The parameter λ satisfies, for g ∈ J1,mK,

λg |Θλg ∼ 1{∆g ̸=0} GIG
(
1

2
,
∥∆g∥ 2

ωy

, 2 ℓg

)
+ 1{∆g =0} Γ(αg, ℓg).

− The parameter π satisfies

π |Θπ ∼ β
(
G0 + a, m−G0 + b

)
.

Proof. This is a consequence of Proposition 3.1. □

In the simulation study of Section 6.1, Scen. 3 and 4 are dedicated to the group-sparse
setting. To conclude this section, a theoretical guarantee is provided (given Ωy and with
λ = λn and π = πn depending on n). It is possible to obtain a model selection consistency
property for this approach when both the number of observations n and the number of
groups m = mn tend to infinity, by adapting the reasoning of [31] dedicated to the linear
regression (with q = 1). Indeed, when Ωy is known, ∆ reduces to a linear transformation of
B. Thus, it is not surprising that a similar result follows under the same kind of hypotheses.
In the sequel, we denote by X(k) ∈ Rn×|k| the design matrix of rank rk corresponding to the
submodel indexed by the binary vector k ∈ {0, 1}m having |k| non-zero values (kg = 1 means
that the g-th group is included in the model), and by Π(k) ∈ Rn×n the projection matrix

onto the column-space of X(k). Similarly, ∆ restricted to k is ∆(k) ∈ Rq×|k|. The true model
is called t and t±g are submodels of t that contain only the g-th group or that are deprived
of it, respectively. Let

δ1 = inf
1⩽ g⩽ |t|

∥∥(In − Π(t−g))X(t+g) ∆
t
(t+g) Ω

− 1
2

y

∥∥2
F

and, for some K > 0,

δK2 = inf
k∈EK

∥∥(In − Π(k))X(t) ∆
t
(t) Ω

− 1
2

y

∥∥2
F

with EK = {k such that t ̸⊂ k and rk ⩽ Krt}. Let also,

µK
n,min = inf

k∈FK

µ+

(Xt
(k) X(k)

n

)
and µ̄n = inf

k∈F
µ∗
(Xt

(k) (In − Π(k∩ t))X(k)

n

)
9



with FK = {k such that t ⊂ k and rk ⩽ (K + 1) rt} and F = {k such that |k\t| > 0}, and
where, for a square matrix A, µ+(A) is the minimum non-zero eigenvalue of A and µ∗(A) is
the geometric mean of the non-zero eigenvalues of A. The hypotheses are those of [31] that
we have to slightly adapt. By fn ≍ gn we mean that there is a constant c ̸= 0 such that
fn/gn → c as n tends to infinity.

(H.1) There exists a rate such that mn = evn with vn → +∞ and vn = o(n).
(H.2) The prior slab probability satisfies 1− πn ≍ 1/mn.
(H.3) The shrinkage factors satisfy nλ♯

n ≍ m2+η
n µ̄−η

n and µK
n,min nλ

♯
n → +∞ for some η > 0,

where λ♯
n = maxi λn, i.

(H.4) There exists ϵ1 > 0 such that δ1 > (1 + ϵ1) rt [(4 + η) lnmn − η ln µ̄n].
(H.5) There exists ϵ2 > 0 such that δK2 > (1 + ϵ2) rt [(4 + η) lnmn − η ln µ̄n] for some

K > max(8/η + 1, η/(η − 1)).

We refer the reader to p. 917 of [31] where the authors give very clarifying comments on the
interpretation to be given to these technical assumptions. In particular, while (H.1), (H.2)
and (H.3) control the behavior of mn, πn and λn as n tends to infinity, (H.4) and (H.5) are
related to sensitivity and specificity and are therefore in connection with the true model t.

Proposition 3.2. Suppose that (H.1)–(H.5) are satisfied. Then, as n tends to infinity,

P(T |Y,X,Ωy)
P−→ 1

where T = {t is selected} and t is the true model.

Proof. The result is obtained by following the same lines as the proof of Thm 2.1 of [31].
One just has to clarify a few points to solve the issues arising from q ⩾ 1 and from the
adaptative shrinkage, which is done in Section 5.4. □

Remark 3.1. Obviously, Proposition 3.2 also holds for the sparse setting (with m = p) and
in that case, it is instructive to draw the parallel with Thm. 1 of [25] even if the estimation
procedure is very different. The authors show that, to obtain a

√
n-consistent estimation of

the precision matrix Ω in a GGM, Ω must contain at most ≍
√
n/ ln p non-zero columns. In

the Gibbs sampler (see Proposition 2.1), the slab probability 1 − π is generated according
to a distribution that satisfies

E[1− π |Θπ] =
p−N0 + b

p+ a+ b
and V(1− π |Θπ) =

(N0 + a)(p−N0 + b)

(p+ a+ b)2 (p+ a+ b+ 1)
.

Thus, if the model selects ≍
√
n/ ln p predictors, it follows that the posterior expectation

of 1 − π is ≍
√
n/(p ln p) = 1/p when p = e

√
n. In that case, the posterior variance of

1 − π is ≍ 1/p2. To sum up, in a model with ≍
√
n/ ln p predictors selected, the posterior

distribution of 1 − π is very concentrated around 1/p which conforms to (H.1) and (H.2).
This is not directly comparable due to the different procedures, but it seems interesting to
observe that the same orders of magnitude are involved to reach theoretical guarantees for
the estimation of ∆.

In the next section, an approach is suggested to deal with sparse-group sparsity in ∆, for
a bi-level selection.
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4. The sparse-group-sparse setting

To produce a sparse model both at the variable level (for variable selection) and at the
group level (for group selection), it seems natural to carry on with our strategy by introducing
another spike-and-slab effect into the first one. The predictors are still ordered in m groups
of sizes κ1 + . . . + κm = p. For the g-th group (1 ⩽ g ⩽ m), λg ∈ R is the g-th component
of λ ∈ Rm and, for the i-th predictor of this group (1 ⩽ i ⩽ κg), νgi ∈ R is the i-th
component of νg ∈ Rκg . The i-th column of the covariate submatrix Xg is Xgi ∈ Rn and the
corresponding slice of ∆g is ∆gi ∈ Rq while ∆g\i ∈ Rq×(κg−1) is ∆g deprived of ∆gi. Here our
approach diverges from [29] and [17]. The bi-level selection of the authors is made through
spike-and-slab effects both at the group scale and on the individual variances, considered as
truncated Gaussians, generating zero groups and (almost surely) zero coefficients within the
groups. Let us suggest instead the Bayesian hierarchical model given by

(4.1)



Y |X,∆,Ωy ∼ MNn×q(−X∆t Ω−1
y , In, Ω

−1
y )

∆g | νg, λg, π
⊥⊥∼ (1− π1)

[
(1− π2)Nq(0, λg νgiΩy) + π2 δ0

]⊗κg
+ π1 δ0

νgi
⊥⊥∼ Γ(α, ℓgi)

λg
⊥⊥∼ Γ(αg, γg)

Ωy ∼ Wq(u, V )

πj
⊥⊥∼ β(aj, bj)

for g ∈ J1,mK, i ∈ J1, κgK and j ∈ J1, 2K, with hyperparameters α = 1
2
(q+1), αg =

1
2
(q κg+1),

ℓgi > 0, γg > 0, u > q−1, V ∈ S q
++, aj > 0, and bj > 0. In this mixture model, π1 is the prior

spike probability on the groups whereas π2 is the prior spike probability within the non-zero
groups, for a bi-level selection. In terms of cumulative shrinkage effects, λ is an adaptative
shrinkage factor acting at the group scale and ν is an adaptative shrinkage factor acting at
the predictor scale (λg is associated with the direct links between the predictors of group g
and all the responses whereas νgi is associated with the direct links between predictor i of
group g and all the responses). In this way, (4.1) opens up many perspectives for dealing
with bi-level shrinkage. We can set γg = γ for all g, for a global shrinkage at the group scale.
At the predictor scale, when ℓgi = ℓg for all i, this is a global shrinkage in the g-th group but
we might even consider a full global shrinkage ℓgi = ℓ. However, an identifiability issue may
result from the product λg νgi between group and within-group effects. Even if the posterior
distributions depend on different levels of data that shall resolve it, one can for example fix
λg = 1 (for adaptative) or νgi = 1 (for global) and let the shrinkage entirely rely on the other
parameter. Although it achieves the same objectives as those of [29] and [17], this hierarchy
seems more consistent with our previous sections (take π2 = 0 and νgi = 1 to remove the
within-group effect and recover the group-sparse setting of Section 3, take π1 = 0 and λg = 1
to remove the group effect and recover the sparse setting of Section 2). In this context, the
degree of sparsity is still characterized by N0 given in (2.2) for the predictor scale, by G0

given in (3.2) for the group scale, but also, for the within-group scale, by the number N0g of
zero columns in each particular group g, that is, for all 1 ⩽ g ⩽ m,

(4.2) N0g = Card(i, ∆gi = 0) =

κg∑
i=1

1{∆gi =0}.
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We also need to define the number J0 of zero columns in the non-zero groups, that is

(4.3) J0 = Card(i, ∆gi = 0 and ∆g ̸= 0) =
m∑
g=1

N0g 1{∆g ̸=0}.

To implement a Gibbs sampler from the full posterior distribution stemming from (4.1), we
may use the conditional distributions given in the proposition below.

Proposition 4.1. In the hierarchical model (4.1), the conditional posterior distributions are
as follows.

− The parameter ∆gi satisfies, for g ∈ J1,mK and i ∈ J1, κgK,

∆gi |Θ∆gi
∼ (1− pgi)Nq(−sgiHgi, sgiΩy) + pgi δ0

where

Hgi = Ωy Y t Xgi +
∑

h,j ̸= g,i

⟨Xgi, Xhj⟩∆hj, sgi =
νgi λg

1 + νgi λg ∥Xgi∥ 2

and

pgi =
ρgi

ρgi + (1− π1) (1− π2) (1 + νgi λg ∥Xgi∥ 2)−
q
2 exp

(
sgi H t

gi Ω
−1
y Hgi

2

)
in which ρgi = (1− π1) π2 1{∆g\i ̸=0} + π1 1{∆g\i =0}.

− The parameter Ωy satisfies

Ωy |ΘΩy ∼ MGIGq

(
n− p+N0 + u

2
, ∆(Xt X+D−1

λν )∆
t, Y tY+ V −1

)
where Dλν = diag(ν11 λ1, . . . , ν1κ1 λ1, . . . , νm1 λm, . . . , νmκm λm).

− The parameter ν satisfies, for g ∈ J1,mK and i ∈ J1, κgK,

νgi |Θνgi ∼ 1{∆gi ̸=0} GIG
(
1

2
,
∆t

giΩ
−1
y ∆gi

λg

, 2 ℓgi

)
+ 1{∆gi =0} Γ(α, ℓgi).

− The parameter λ satisfies, for g ∈ J1,mK,

λg |Θλg ∼ 1{∆g ̸=0} GIG
(
qN0g + 1

2
, tr(D−1

νg ∆
t
g Ω

−1
y ∆g), 2 γg

)
+ 1{∆g =0} Γ(αg, γg)

where Dνg = diag(νg1, . . . , νgκg).
− The parameter π satisfies, for j ∈ J1, 2K,

πj |Θπj
∼ β

(
Aj + aj, Bj + bj

)
.

where A1 = G0, B1 = m−G0, A2 = J0 and B2 = p−N0.

Proof. See Section 5.3. □

It only remains to give the explicit results for the particular case q = 1. The direct
links form a row vector such that ∆t ∈ Rp with groups ∆t

g ∈ Rκg (1 ⩽ g ⩽ m) containing
predictors ∆gi ∈ R (1 ⩽ i ⩽ κg), and the precision matrix of the responses reduces to ωy > 0.
According to the parametrization of the distributions (see Section 1), the corresponding prior
distribution of ωy is Γ(u

2
, 1
2 v
) for u, v > 0, like in the other settings, and the one of νgi is

E(ℓgi) for ℓgi > 0. The other priors are unchanged.
12



Corollary 4.1. In the hierarchical model (4.1) with q = 1, the conditional posterior distri-
butions are as follows.

− The parameter ∆gi satisfies, for g ∈ J1,mK and i ∈ J1, κgK,

∆gi |Θ∆gi
∼ (1− pgi)N (−sgi hgi, sgi ωy) + pgi δ0

where

hgi = ωy ⟨Xgi, Y⟩+
∑

h,j ̸= g,i

⟨Xgi, Xhj⟩∆hj, sgi =
νgi λg

1 + νgi λg ∥Xgi∥ 2

and
pgi =

ρgi

ρgi + (1− π1) (1− π2) (1 + νgi λg ∥Xgi∥ 2)−
1
2 exp

(
sgi h2

gi

2ωy

)
in which ρgi = (1− π1) π2 1{∆g\i ̸=0} + π1 1{∆g\i =0}.

− The parameter ωy satisfies

ωy |Θωy ∼ GIG
(
n− p+N0 + u

2
, ∆(Xt X+D−1

λν )∆
t, Y t Y+

1

v

)
where Dλν = diag(ν11 λ1, . . . , ν1κ1 λ1, . . . , νm1 λm, . . . , νmκm λm).

− The parameter ν satisfies, for g ∈ J1,mK and i ∈ J1, κgK,

νgi |Θνgi ∼ 1{∆gi ̸=0} GIG
(
1

2
,

∆2
gi

λg ωy

, 2 ℓgi

)
+ 1{∆gi =0} E(ℓgi).

− The parameter λ satisfies, for g ∈ J1,mK,

λg |Θλg ∼ 1{∆g ̸=0} GIG

(
N0g + 1

2
,
∆g D

−1
νg ∆t

g

ωy

, 2 γg

)
+ 1{∆g =0} Γ(αg, γg)

where Dνg = diag(νg1, . . . , νgκg).
− The parameter π satisfies, for j ∈ J1, 2K,

πj |Θπj
∼ β

(
Aj + aj, Bj + bj

)
.

where A1 = G0, B1 = m−G0, A2 = J0 and B2 = p−N0.

Proof. This is a consequence of Proposition 4.1. □

In the simulation study of Section 6.1, Scen. 5 and 6 are dedicated to the sparse-group-
sparse setting. Now, let us prove our assertions by a few computational steps.

5. Conditional posterior distributions

5.1. The sparse setting: proof of Proposition 2.1. First of all, the full posterior dis-
tribution of the parameters conditional on X and Y satisfies

p(∆,Ωy, λ, π |Y,X) ∝ p(Y |X,∆,Ωy) p(∆ |Ωy, λ, π) p(λ) p(Ωy) p(π)

∝ |Ωy|
n
2 exp

(
−1

2

∥∥∥(Y+ X∆t Ω−1
y ) Ω

1
2
y

∥∥∥2
F

)
×

p∏
i=1

[
1− π√
λ q
i |Ωy|

exp

(
−
∆t

i Ω
−1
y ∆i

2λi

)
1{∆i ̸=0}
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+ π 1{∆i =0}

]
λ

1
2
(q+1)−1

i e−ℓi λi

× |Ωy|
u−q−1

2 exp

(
−tr(V −1Ωy)

2

)
π a−1 (1− π) b−1.(5.1)

On the one hand, exploiting the cyclic property of the trace, a tedious calculation shows
that, for all 1 ⩽ i ⩽ p,∥∥∥(Y+ X∆t Ω−1

y ) Ω
1
2
y

∥∥∥2
F

= tr(Y t YΩy) + 2 tr(Xt Y∆) + tr(Xt X∆t Ω−1
y ∆)

= ∥Xi∥ 2∆t
i Ω

−1
y ∆i + 2

∑
j ̸= i

⟨Xi, Xj⟩∆t
j Ω

−1
y ∆i + 2X t

i Y∆i + T̸= i(5.2)

where the term T̸= i does not depend on ∆i. Thus,

p(∆i |Θ∆i
) ∝ exp

(
−1

2
∥Xi∥ 2∆t

i Ω
−1
y ∆i −

∑
j ̸= i

⟨Xi, Xj⟩∆t
j Ω

−1
y ∆i − X t

i Y∆i

)

×

[
1− π√
λ q
i |Ωy|

exp

(
−
∆t

i Ω
−1
y ∆i

2λi

)
1{∆i ̸=0} + π 1{∆i =0}

]

= exp

(
−1

2
(∆i + si Hi)

t (si Ωy)
−1 (∆i + si Hi)

)
× exp

(
si H

t
i Ω

−1
y Hi

2

)
1− π√
λ q
i |Ωy|

1{∆i ̸=0} + π 1{∆i =0}(5.3)

for all 1 ⩽ i ⩽ p, where

Hi = Ωy Y tXi +
∑
j ̸= i

⟨Xi, Xj⟩∆j and si =
λi

1 + λi ∥Xi∥ 2
.

This is still a multivariate Gaussian spike-and-slab distribution such that, by renormalizing,
the spike has probability

pi = P(∆i = 0 |Θ∆i
) =

π

π + (1− π) (1 + λi ∥Xi∥ 2)−
q
2 exp

(
si H t

i Ω−1
y Hi

2

) .
On the other hand, coming back to (5.2), we can also write∥∥∥(Y+ X∆t Ω−1

y ) Ω
1
2
y

∥∥∥2
F
= tr(Y tYΩy) + tr(∆Xt X∆tΩ−1

y ) + T̸= y

where T̸= y does not depend on Ωy. That leads, via (5.1), to

p(Ωy |ΘΩy) ∝ |Ωy|
n−p+N0+u−q−1

2 exp

(
− 1

2
tr((Y tY+ V −1) Ωy)

− 1

2

(
tr(∆Xt X∆tΩ−1

y ) +
∑
∆i ̸=0

∆t
i Ω

−1
y ∆i

λi

))
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= |Ωy|
n−p+N0+u−q−1

2 exp

(
−1

2
tr
(
(Y t Y+ V −1) Ωy +∆(XtX+D−1

λ )∆tΩ−1
y

))
(5.4)

where N0 is given in (2.2) and Dλ = diag(λ1, . . . , λp). Finally, it is easy to see that, for all
1 ⩽ i ⩽ p,

(5.5) p(λi |Θλi
) ∝ 1√

λi

exp

(
−
∆t

i Ω
−1
y ∆i

2λi

− ℓi λi

)
1{∆i ̸=0} + λ

1
2
(q+1)−1

i e−ℓi λi 1{∆i =0}

whereas

(5.6) p(π |Θπ) ∝ πN0+a−1 (1− π)p−N0+b−1.

We recognize in (5.3), (5.4), (5.5) and (5.6) the announced conditional posterior distributions,
which concludes the proof. □

5.2. The group-sparse setting: proof of Proposition 3.1. The full posterior distribu-
tion of the parameters conditional on X and Y satisfies

p(∆,Ωy, λ, π |Y,X) ∝ p(Y |X,∆,Ωy) p(∆ |Ωy, λ, π) p(λ) p(Ωy) p(π)

∝ |Ωy|
n
2 exp

(
−1

2

∥∥∥(Y+ X∆t Ω−1
y ) Ω

1
2
y

∥∥∥2
F

)
×

m∏
g=1

[
1− π√

λ
q κg
g |Ωy|κg

exp

(
−
tr(∆t

g Ω
−1
y ∆g)

2λg

)
1{∆g ̸=0}

+ π 1{∆g =0}

]
λ

1
2
(q κg+1)−1

g e−ℓg λg

× |Ωy|
u−q−1

2 exp

(
−tr(V −1Ωy)

2

)
π a−1 (1− π) b−1.(5.7)

Like in the previous proof, a first important step is to note that, for all 1 ⩽ g ⩽ m,∥∥∥(Y+ X∆t Ω−1
y ) Ω

1
2
y

∥∥∥2
F

=

∥∥∥∥∥YΩ
1
2
y +

m∑
j=1

Xj ∆
t
j Ω

− 1
2

y

∥∥∥∥∥
2

F

= ∥Xg ∆
t
g Ω

− 1
2

y ∥2F + 2
∑
j ̸= g

tr(∆j X t
j Xg ∆

t
g Ω

−1
y )

+ 2 tr(X t
g Y∆g) + T̸= g(5.8)

where the term T̸= g does not depend on ∆g. Thus, after a tedious calculation exploiting the
cyclic property of the trace, one can obtain the factorization

p(∆g |Θ∆g) ∝ exp

(
−1

2
∥Xg ∆

t
g Ω

− 1
2

y ∥2F −
∑
j ̸= g

tr(∆j X t
j Xg ∆

t
g Ω

−1
y )− tr(X t

g Y∆g)

)

×

[
1− π√

λ
q κg
g |Ωy|κg

exp

(
−
tr(∆t

g Ω
−1
y ∆g)

2λg

)
1{∆g ̸=0} + π 1{∆g =0}

]

= exp

(
−1

2
tr
(
S−1
g (∆g +Hg Sg)

t Ω−1
y (∆g +Hg Sg)

))
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× exp

(
tr(H t

g Ω
−1
y Hg Sg)

2

)
1− π√

λ
q κg
g |Ωy|κg

1{∆g ̸=0} + π 1{∆g =0}(5.9)

for all 1 ⩽ g ⩽ m, where

Hg = Ωy Y tXg +
∑
j ̸= g

∆j X t
j Xg and Sg = λg

(
Iκg + λg X t

g Xg

)−1
.

We recognize the announced Gaussian spike-and-slab distribution, and the probability of the
spike is given, after renormalization, by

pg = P(∆g = 0 |Θ∆g) =
π

π + (1− π) |Iκg + λg X t
g Xg|−

q
2 exp

(
tr(H t

g Ω−1
y Hg Sg)

2

) .
Following the same lines as the ones used to establish (5.4), we obtain from (5.7) the condi-
tional distribution

p(Ωy |ΘΩy) ∝ |Ωy|
n−p+N0+u−q−1

2 exp

(
− 1

2
tr((Y tY+ V −1) Ωy)

− 1

2

(
tr(∆Xt X∆tΩ−1

y ) +
∑
∆g ̸=0

tr(∆t
g Ω

−1
y ∆g)

λg

))

= |Ωy|
n−p+N0+u−q−1

2 exp

(
−1

2
tr
(
(Y t Y+ V −1) Ωy +∆(XtX+D−1

λ )∆tΩ−1
y

))
(5.10)

where Dλ = diag(λ1, . . . , λ1, . . . , λm, . . . , λm) with each λg duplicated κg times, and since we
can note that, due to the continuous nature of ∆ |{∆ ̸= 0},

m∑
g=1

κg1{∆g ̸=0} = p−N0

for N0 given in (2.2). Next, we obtain in a simpler way that, for all 1 ⩽ g ⩽ m,

p(λg |Θλg) ∝ 1√
λg

exp

(
−
tr(∆t

g Ω
−1
y ∆g)

2λg

− ℓg λg

)
1{∆g ̸=0}

+ λ
1
2
(q κg+1)−1

g e−ℓg λg 1{∆g =0}.(5.11)

Finally,

(5.12) p(π |Θπ) ∝ πG0+a−1 (1− π)m−G0+b−1

where G0 is defined in (3.2). We can check that the conditional distributions (5.9), (5.10),
(5.11) and (5.12) correspond to the ones announced in the proposition, which concludes the
proof. □

5.3. The sparse-group-sparse setting: proof of Proposition 4.1. The full posterior
distribution of the parameters conditional on X and Y satisfies

p(∆,Ωy, ν, λ, π |Y,X) ∝ p(Y |X,∆,Ωy) p(∆ |Ωy, ν, λ, π) p(ν) p(λ) p(Ωy) p(π)

∝ |Ωy|
n
2 exp

(
−1

2

∥∥∥(Y+ X∆t Ω−1
y ) Ω

1
2
y

∥∥∥2
F

)
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×
m∏
g=1

[(
(1− π1)Pg 1{∆g ̸=0} + π1 1{∆g =0}

)
× λ

1
2
(q κg+1)−1

g e−γg λg

κg∏
i=1

ν
1
2
(q+1)−1

gi e−ℓgi νgi

]

× |Ωy|
u−q−1

2 exp

(
−tr(V −1Ωy)

2

) 2∏
j=1

π
aj−1
j (1− πj)

bj−1(5.13)

where, for 1 ⩽ g ⩽ m,

Pg =

κg∏
i=1

[
1− π2√

(νgi λg) q |Ωy|
exp

(
−
∆t

giΩ
−1
y ∆gi

2 νgi λg

)
1{∆gi ̸=0} + π2 1{∆gi =0}

]
.

Using the same decompositions as (5.2) or (5.8), the full posterior distribution given above
leads to

p(∆gi |Θ∆gi
) ∝ exp

(
−1

2
∥Xgi∥ 2∆t

giΩ
−1
y ∆gi −

∑
h,j ̸= g,i

⟨Xgi, Xhj⟩∆t
hj Ω

−1
y ∆gi − X t

giY∆gi

)

×

[
(1− π1)

[
1− π2√

(νgi λg) q |Ωy|
exp

(
−
∆t

giΩ
−1
y ∆gi

2 νgi λg

)
1{∆gi ̸=0}

+ π2 1{∆gi =0}

]
1{∆g ̸=0} + π1 1{∆g =0}

]

= exp

(
−1

2
(∆gi + sgiHgi)

t (sgiΩy)
−1 (∆gi + sgiHgi)

)
× exp

(
sgiH

t
giΩ

−1
y Hgi

2

)
(1− π1) (1− π2)√

(νgi λg) q |Ωy|
1{∆gi ̸=0}

+
(
(1− π1) π2 1{∆g\i ̸=0} + π1 1{∆g\i =0}

)
1{∆gi =0}(5.14)

for 1 ⩽ g ⩽ m and 1 ⩽ i ⩽ κg, where ∆g\i is ∆g deprived of ∆gi,

Hgi = Ωy Y tXgi +
∑

h,j ̸= g,i

⟨Xgi, Xhj⟩∆hj and sgi =
νgi λg

1 + νgi λg ∥Xgi∥ 2
.

Here, we used the binary equalities stemming from {∆gi ̸= 0} ∩ {∆g ̸= 0} = {∆gi ̸= 0},
{∆gi = 0} ∩ {∆g ̸= 0} = {∆gi = 0} ∩ {∆g\i ̸= 0} and {∆gi = 0} ∩ {∆g = 0} =
{∆gi = 0}∩{∆g\i = 0}, which turn out to be very useful to separate ∆gi and Θ∆gi

. This is
characteristic of a multivariate Gaussian spike-and-slab distribution. By renormalizing, one
can see that the spike has probability

pgi = P(∆gi = 0 |Θ∆gi
) =

ρgi

ρgi + (1− π1) (1− π2) (1 + νgi λg ∥Xgi∥ 2)−
q
2 exp

(
sgi H t

gi Ω
−1
y Hgi

2

)
with

ρgi = (1− π1) π2 1{∆g\i ̸=0} + π1 1{∆g\i =0}.
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Next, following (5.13) and the reasoning used to establish (5.4), we may also write

p(Ωy |ΘΩy) ∝ |Ωy|
n−p+N0+u−q−1

2 exp

(
− 1

2
tr((Y tY+ V −1) Ωy)

− 1

2

(
tr(∆Xt X∆tΩ−1

y ) +
∑

∆gi ̸=0

∆t
giΩ

−1
y ∆gi

νgi λg

))

= |Ωy|
n−p+N0+u−q−1

2 exp

(
−1

2
tr
(
(Y t Y+ V −1) Ωy +∆(XtX+D−1

λν )∆
tΩ−1

y

))
(5.15)

where N0 is given in (2.2) and Dλν = diag(ν11λ1, . . . , ν1κ1λ1, . . . , νm1λm, . . . , νmκmλm). The
shrinkage parameters ν and λ are easier to handle. For 1 ⩽ g ⩽ m and 1 ⩽ i ⩽ κg,

p(νgi |Θνgi) ∝ 1
√
νgi

exp

(
−
∆t

giΩ
−1
y ∆gi

2 νgi λg

− ℓgi νgi

)
1{∆gi ̸=0}

+ ν
1
2
(q+1)−1

gi e−ℓgi νgi 1{∆gi =0}(5.16)

whereas

p(λg |Θλg) ∝ λ
qN0g−1

2
g exp

(
−
tr(D−1

νg ∆
t
g Ω

−1
y ∆g)

2λg

− γg λg

)
1{∆g ̸=0}

+ λ
1
2
(q κg+1)−1

g e−γg λg 1{∆g =0}(5.17)

where N0g is defined in (4.2) and Dνg = diag(νg1, . . . , νgκg). Finally,

(5.18) p(π1 |Θπ1) ∝ πG0+a1−1
1 (1− π1)

m−G0+b1−1

and

(5.19) p(π2 |Θπ2) ∝ πJ0+a2−1
2 (1− π2)

p−N0+b2−1

where G0 and J0 are given in (3.2) and (4.3), respectively. For the latter result, we used
the fact that the number of non-zero columns in the non-zero groups must coincide with the
number of non-zero columns of ∆, that is p−N0. Like in the previous proofs, we recognize
the announced conditional distributions in (5.14), (5.15), (5.16), (5.17), (5.18) and (5.19).
That concludes these tedious calculations. □

5.4. Proof of Proposition 3.2. The result is obtained by following the steps of the proof
of Thm 2.1 in [31] but, beforehand, we need to clarify a few points to extend the reasoning
of the authors from q = 1 to q ⩾ 1 and take into account the adaptative shrinkage. For any
model k, let K = {k is selected} so that K = T when the true model t is considered. First,
recall that λ and π are fixed and rewrite (5.7) like

P∆(K |Y,X,Ωy) ∝ exp

(
−1

2

∥∥∥(Y+ X(k) ∆
t
(k) Ω

−1
y ) Ω

1
2
y

∥∥∥2
F

)
× (1− π)|k|

π|k|
√

|Λk|q |Ωy|kr
exp

(
−
tr(∆t

(k) Ω
−1
y ∆(k)D

−1
k )

2

)
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∝ (1− π)|k|

π|k|
√
|Λk|q |Ωy|kr

exp

(
tr(∆̃(k) Fk ∆̃

t
(k) Ω

−1
y )

2

)

× exp

(
−1

2
tr
(
(∆(k) − ∆̃(k))Fk (∆(k) − ∆̃(k))

t Ω−1
y

))
(5.20)

where Fk = D−1
k + Xt

(k) X(k), Dk = diag((λℓ, . . . , λℓ)ℓ∈ k) with each λℓ duplicated κℓ times,

kr = ∥(κℓ)ℓ∈ k∥1, Λk = diag((λκℓ
ℓ )ℓ∈ k) and

∆̃(k) = −Ωy Yt X(k) F
−1
k .

Then, integrating over ∆(k), it follows (see Def. 1.1 with Σ1 = Ωy and Σ2 = F −1
k ) that

P(K |Y,X,Ωy) =

∫
Rq×κk

P∆(K |Y,X,Ωy, λ, π) d∆(k)

∝ (1− π)|k|

π|k|
√

|Λk|q |Fk|q
exp

(
tr(∆̃(k) Fk ∆̃

t
(k) Ω

−1
y )

2

)

∝
(
1− π

π

)|k|

|Λk|−
q
2 |Fk|−

q
2 exp

(
−1

2
tr
(
Y∗ t (In − X(k) F

−1
k Xt

(k))Y∗))
=

(
1− π

π

)|k|

|Λk|−
q
2 |Fk|−

q
2 exp

(
−1

2

(
RSSk(∆̃

∗
(k)) +

∥∥∆̃∗
(k)D

− 1
2

k

∥∥2
F

))
where Y∗ = YΩ

1
2
y , ∆̃∗

(k) = Ω
− 1

2
y ∆̃(k) and RSSk : H ∈ Rq×κk 7→ ∥Y∗−X(k) H

t∥2F is the residual
sum of squares function in the renormalized linear model indexed by k, that is

Y∗ = −X(k) ∆
t
(k) Ω

− 1
2

y + E∗

with E∗ = E Ω
1
2
y ∼ MNn×q(0, In, Iq). Thus, the so-called posterior ratio between any false

model k and t is given by

PR(k, t) =
P(K |Y,X,Ωy)

P(T |Y,X,Ωy)
=

Qk

Qt

(
1− π

π

)|k|−|t|

e−
1
2
(R̃k−R̃t)

with Qk = |Λk|−
q
2 |Fk|−

q
2 and R̃k = RSSk(∆̃

∗
(k)) + ∥∆̃∗

(k) D
− 1

2
k ∥2F , using the notation of [31].

In particular, due to the generalized ridge penalty,

(5.21) ∆̃∗
(k) = argmin

H

(
RSSk(H) +

∥∥HD
− 1

2
k

∥∥2
F

)
so that for nested models k1 and k2 (with k1 ⊆ k2), we must have R̃k2 ⩽ R̃k1 . Let also
Rk = ∥(In − Π(k))Y∗∥2F = ∥(Iq ⊗ (In − Π(k))) vec(Y∗)∥22. Cochran’s theorem entails the chi-
squared distributions Rt ∼ χ2(q (n−rt)) and Rt−Rk ∼ χ2(q (rk−rt)) for any ‘bigger’ model
k ⊃ t and q ⩾ 1. Combining all these preliminary considerations, the strategy of [31] now
applies and leads, under our revised hypotheses, to

1− P(T |Y,X,Ωy)

P(T |Y,X,Ωy)
=
∑
k ̸= t

PR(k, t)
P−→ 0.

□
19



6. Empirical results

In this section, let us call (s), (gs) and (sgs) the related settings, and let us denote by
(ad) the adaptative shrinkage and by (gl) the global shrinkage. First of all, these models
contain many hyperparameters that have to be carefully tuned. Our experiments showed
that, unsurprinsingly, the results are strongly impacted by the prior amount of shrinkage on
∆, driven by ℓ and even by γ for (sgs). Apart from the usual cross-validation procedures, we
could stay in line with our Bayesian approach and suggest conjugate Gamma hyperpriors.
This is very easy to implement, but the hyperparameters are now replaced by other hyper-
parameters and the same questions arise. Instead, like in [29] and [17], we follow the idea of
[22] and we use a Monte-Carlo EM algorithm. By way of example, from the full posterior
probability (5.1) and since λi ∼ Γ(α, ℓi) for all i, it is not hard to see that, with (s),

ln p(∆,Ωy, λ, π |Y,X) =
p∑

i=1

(α ln ℓi − ℓi λi) + T̸= ℓ

where the term T̸= ℓ does not depend on ℓ. Thus, the k-th iteration of the EM algorithm
should lead to

ℓ
(k)
i =

1
2
(q + 1)

E(k−1)[λi |Y, X]
and ℓ (k) =

p
2
(q + 1)∑p

i=1 E(k−1)[λi |Y, X]
for the adaptative shrinkage and the global shrinkage (λi = λ), respectively. The intractable
conditional expectations are then estimated with the help of the Gibbs samples. For (gs),
the results are mainly the same as above (replace q+1 by qκg+1 in the first case, p(q+1) by
qp+m in the second case and consider 1 ⩽ g ⩽ m instead of 1 ⩽ i ⩽ p), and similar results
also follow with (sgs). Recall that our definitions of the adaptative and global shrinkages
are given in the corresponding sections, in the description of the hierarchical models. The
tuning of u and V (or v) is actually trickier. Because E[Ωy] = uV , we set V = 1

u
Iq and u

is conveniently chosen to be the smallest integer such that Ωy is (almost surely) invertible,
that is u = q (see e.g. [3]). This is particularly adapted when the dataset is standardized.
Finally, a and b reflect the degree of sparsity to introduce in the direct links. We can set
a ≫ b to promote sparse settings, which is potentially interesting when p ≫ n, but a = b = 1
is a standard non-informative choice and a < b may also be useful for variable selection (see
e.g. the real dataset of Section 6.2). They can be chosen from a cross-validation step
(for prediction purposes) or to enforce some degree of sparsity (for selection purposes), just
like a practitioner manages the tuning parameter of the Lasso. The posterior median is
used to estimate ∆ and get sparsity whereas the posterior mean is used to estimate Ωy.
Indeed, we don’t want to impose any sparsity on Ωy (q is small), so we decided to retain
this standard choice. But the concern is much greater for ∆ because some coordinates must
be exactly zero. This is the reason why the posterior median seemed a more appropriate
choice (in particular, it suffices for the sampler to generate zeros more than half the time
for the empirical posterior median to be zero). Due to the huge amount of calculations in
the simulations, the estimations are made on the basis of 3000 iterations of the sampler in
which the first 2000 are burn-ins. This is revised upwards for the real data (10000 iterations
with 5000 burn-ins).

Remark 6.1. To the best of our knowledge, there is no simple way to sample from theMGIGd

distribution as soon as d > 1. The recent method described in Sec. 3.3.2 of [8], relying on
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the Matsumoto-Yor property (see Thm. 3.1 of [19]) to get a MGIGd sample from the very
standard GIG and Wd distributions, is unfortunately inapplicable in our context. Indeed, for
example in the sparse setting, that would require finding z ∈ Rq such that Y t Y+V −1 = b zzt

for some b > 0, which is clearly impossible since Y t Y+V −1 has full rank. In [9], the authors
show thatMGIGd(ν, A, B) is a unimodal distribution of which modeM ∈ S d

++ is the unique
solution of the algebraic Riccati equation (d + 1 − 2 ν)M + MBM = A, and a standard
importance sampling approach follows for the mean of the distribution. Our fallback solution
is to solve this Riccati equation at each step and to replace all MGIGd random variables
by the (unique) mode of the consecutive distributions. To assess the credibility of this ad
hoc sampling, the ‘oracle’ models in which Ωy and the shrinkage parameters are known are
added to the simulations. We will see that, despite an unavoidable loss, the results remain
pretty consistent. In particular, the support recovery does not appear to be impacted.

6.1. A simulation study. In this empirical section1, the matrix of order d ⩾ 1 given by

Cd =
(
ρ|i−j|)

1⩽ i,j ⩽ d

will be used as a typical covariance structure, for some 0 ⩽ ρ < 1. Thus, the precision
matrices will be chosen as a multiple of C −1

d to keep the same guideline in our simulations.
The responses

Yk = B t Xk + Ek

are generated through relations (1.1) where, for all 1 ⩽ k ⩽ n, Ek ∼ N (0, R). Because our
models assume prior independence (or group-independence) in the columns of ∆, it seems
necessary to look at the influence of correlation among the predictors. So the standard
choice Xk ∼ N (0, Ip) is first considered, but in some cases we will also test Xk ∼ N (0, Cp)
for ρ = 0.5 and ρ = 0.9 to introduce a significant correlation between close predictors (see
Figure 1). For each experiment, the support recovery of ∆ is evaluated thanks to the so-called
F -score given by

F =
2 pr re
pr + re

where pr =
TP

TP + FP
and re =

TP

TP + FN

are the precision and the recall, respectively, and where T/F and P/N stand for true/false
and positive/negative. To assess prediction skills, ne randomly chosen observations are
used for estimation (for different ne) and the remaining nv = n − ne = 100 independent
observations serve to compute the mean squared prediction error (MSPE). The results are
compared to the ones obtained via the penalized maximum of likelihood (PML) approach of
[33] thanks to the correctly adapted implementations of [6] and [21], with a cross-validated
tuning parameter. In addition, we compute the sparse precision matrix estimations given
by the graphical Lasso (GLasso) of [10], and by the CLIME algorithm of [4], using the R

packages glasso and fastclime, respectively. Note that we always keep a small value for q,
so ∆ is penalized but not Ωy when possible (PML and GLasso). Finally, the recent approach
of [25], called ANT and based on the individual estimations of the partial correlations, is also
implemented. Unlike PML, GLasso and CLIME, sparsity is not the result of penalizations
for ANT but, instead, a threshold is deduced from the asymptotic normality of the estimates
to decide which are significant and which can be set to zero. Let us add some preliminary

1The codes and the dataset are available at https://github.com/FredericProia/BayesPGGM
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comments about the methods compared in these simulations, all related to high-dimensional
precision matrix estimation.

− There is a important advantage in favor of our Bayesian approaches, PML and ANT
because they do not need the estimation of Ωx ∈ S p

++. Indeed, extracting the estimation
of ∆ ∈ Rq×p and Ωy ∈ S q

++ from that of the full precision matrix Ω ∈ S q+p
++ may generate

a drastic bias when p ≫ q, and that explains in particular why GLasso and CLIME give
pretty bad results in what follows.

− In its standard version, ANT is not designed to produce column-sparsity or group-sparsity
in ∆. So, by considering multiple testing at the column or even group level, we allow
groups of coefficients to be zeroed simultaneously. We have observed that this modified
ANT method (called ANT* in the simulations) loses a bit in prediction quality but is
greatly improved for support recovery.

− Unfortunately, this is not appropriate for PML, GLasso and CLIME. It is therefore not
surprising that they are largely outperformed by our Bayesian models and ANT* for (gs)
and (sgs). Using group-penalties, which to the best of our knowledge still does not exist,
should improve the results of these methods to some extent.

The seven scenarios below, from Scen. 0 to Scen. 6, as heterogeneous as possible, repre-
sent the diversity of the situations (high-dimensionality, kind of sparsity, dimension of the
responses, coefficients hard to detect, etc.). We repeat each one N = 100 or N = 50 times,
depending on the computation times involved, and the numerical results for ne = 400 and
uncorrelated predictors are summarized in Table 1. In addition, the evolution of MSPE is
represented on Figure 1 for Scen. 1, 3 and 5, when ne grows from 100 to 500, both for un-
correlated and correlated predictors. The three configurations (s), (gs) and (sgs) are tested
on the grouped scenarios (from Scen. 3 to Scen. 6) with the adaptative shrinkage.

− Scenario 0 (small dimension, no sparsity). Let q = 1, p = 5 and set ωy = 1. We fill ∆
with N (0, 2ωy) coefficients.

− Scenario 1 (sparse direct links, univariate responses). Let q = 1, p = 50 and set ωy = 1.
We randomly choose 10 locations of ∆ filled with N (0, ωy) coefficients while the others
are zero.

− Scenario 2 (sparse direct links, multivariate responses). Let q = 2, p = 80 and set
Ωy = 2C −1

2 with ρ = 0.5. We randomly choose 10 columns of ∆ filled with N2(0,Ωy)
coefficients while the others are zero.

− Scenario 3 (group-sparse direct links, univariate responses). Let q = 1, p = 320 and set
ωy = 1. We consider m = 5 groups of size 100, 10, 100, 10 and 100. The two groups of
size 10 are filled with N (0, 0.5ωy) and N (0, ωy) coefficients, respectively, while the other
groups are zero.

− Scenario 4 (group-sparse direct links, multivariate responses). Let q = 3, p = 500 and
set Ωy = 3C −1

3 with ρ = 0.5. We divide the columns of ∆ into m = 25 groups of size
20. We randomly choose 3 groups filled with N3(0, 0.5Ωy), N3(0,Ωy) and N3(0, 1.5Ωy)
coefficients, respectively, while the other groups are zero.

− Scenario 5 (sparse-group-sparse direct links, univariate responses). Let q = 1, p = 150
and set ωy = 1. We consider m = 3 groups of size 50. Only the second group is non-zero,
into which we randomly fill 10 locations with N (0, ωy) coefficients.

− Scenario 6 (sparse-group-sparse direct links, multivariate responses). Let q = 5, p = 1000
and set Ωy = 5C −1

5 with ρ = 0.5. We divide the columns of ∆ into m = 20 groups of
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size 50, and a randomly chosen one is half filled with N5(0,Ωy) coefficients. The others
columns of ∆ are zero.

Scenario 0

Mod. Shr. MSPE F pr re
(s-or) - 1.01 (0.11) 1.00 1.00 1.00
(s) (ad) 1.03 (0.13) 1.00 1.00 1.00
(s) (gl) 1.03 (0.13) 1.00 1.00 1.00

PML - 1.01 (0.16) 1.00 1.00 1.00
GLasso - 1.00 (0.15) 1.00 1.00 1.00
CLIME - 1.00 (0.15) 1.00 1.00 1.00
ANT* - 1.04 (0.13) 1.00 1.00 1.00

Hyperparam. π = 0

Scenario 1

Mod. Shr. MSPE F pr re
(s-or) - 1.02 (0.13) 0.95 1.00 0.90
(s) (ad) 1.04 (0.13) 0.95 1.00 0.90
(s) (gl) 1.03 (0.13) 0.95 1.00 0.90

PML - 1.08 (0.15) 0.82 0.69 1.00
GLasso - 2.37 (0.96) 0.78 0.77 0.80
CLIME - 2.52 (0.98) 0.79 0.78 0.80
ANT* - 1.25 (0.22) 0.87 0.85 0.90

Hyperparam. (25, 1)

Scenario 2

Mod. Shr. MSPE F pr re
(s-or) - 0.52 (0.09) 0.95 1.00 0.90
(s) (ad) 0.54 (0.09) 0.95 1.00 0.90
(s) (gl) 0.55 (0.08) 0.95 1.00 0.90

PML - 0.77 (0.15) 0.86 1.00 0.75
GLasso - 1.74 (0.49) 0.72 0.91 0.60
CLIME - 1.11 (0.35) 0.73 0.76 0.70
ANT* - 1.04 (0.44) 0.90 0.89 0.91

Hyperparam. (80, 1)

Scenario 3

Mod. Shr. MSPE F pr re
(gs-or) - 1.03 (0.27) 1.00 1.00 1.00
(gs) (ad) 1.04 (0.27) 1.00 1.00 1.00
(gs) (gl) 1.04 (0.34) 1.00 1.00 1.00
(s) (ad) 1.16 (0.27) 0.92 1.00 0.85
(sgs) (ad) 1.07 (0.25) 0.92 1.00 0.86
PML - 1.80 (0.36) 0.89 1.00 0.80

GLasso - 4.23 (1.61) 0.58 0.50 0.70
CLIME - 2.98 (1.22) 0.68 0.90 0.55
ANT* - 1.52 (0.95) 1.00 1.00 1.00

Hyperparam. (100, 1) – (5, 1) – (5, 1, 25, 1)

Scenario 4

Mod. Shr. MSPE F pr re
(gs-or) - 0.40 (0.14) 1.00 1.00 1.00
(gs) (ad) 0.45 (0.16) 1.00 1.00 1.00
(gs) (gl) 0.46 (0.17) 1.00 1.00 1.00
(s) (ad) 0.52 (0.18) 0.98 1.00 0.96
(sgs) (ad) 0.48 (0.17) 0.99 1.00 0.98
PML - 3.18 (0.53) 0.75 0.94 0.62

GLasso - 9.46 (1.38) 0.46 0.66 0.35
CLIME - 8.32 (1.51) 0.48 0.45 0.52
ANT* - 6.53 (1.22) 1.00 1.00 1.00

Hyperparam. (100, 1) – (25, 1) – (50, 1, 50, 1)

Now, let us try to summarize our observations. In terms of support recovery, the Bayesian
spike-and-slab framework and the modified ANT* method give results incomparably better
than the sparsity-inducing penalized approaches (PML, GLasso and CLIME). As suggested
in Rem. 3.3 of [21], this may be a consequence of the fact that the cross-validation steps
calibrate the models to reach the best prediction error, sometimes at the cost of support
recovery by picking a small penalty level. The superiority of ANT over GLasso and CLIME
is recognized and discussed in [25], but this also highlights the ability of our Bayesian models
to reach good results both in prediction and in support recovery. It can also be seen that
(s) gives weaker results than (sgs) in the grouped scenarios, probably due to the fact that it
does not take into account the group structure, but still better than the penalized methods.
However, the computational times involved (see remarks below) make (s) less relevant than
(sgs) in these situations, even if the results are not drastically different. Unsurprisingly,
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Scenario 5

Mod. Shr. MSPE F pr re
(sgs-or) - 1.00 (0.15) 0.96 1.00 0.92
(sgs) (ad) 1.04 (0.16) 0.95 1.00 0.91
(sgs) (gl) 1.03 (0.16) 0.91 1.00 0.84
(s) (ad) 1.08 (0.14) 0.93 1.00 0.87
(gs) (ad) 1.24 (0.19) 0.33 0.20 1.00
PML - 1.92 (0.60) 0.89 1.00 0.80

GLasso - 3.48 (1.30) 0.78 0.86 0.71
CLIME - 1.88 (0.92) 0.79 1.00 0.65
ANT* - 1.26 (0.98) 0.88 0.86 0.90

Hyperparam. (50, 1) – (3, 1) – (3, 1, 50, 1)

Scenario 6

Mod. Shr. MSPE F pr re
(sgs-or) - 0.21 (0.13) 1.00 1.00 1.00
(sgs) (ad) 0.24 (0.32) 1.00 1.00 1.00
(sgs) (gl) 0.24 (0.33) 1.00 1.00 1.00
(s) (ad) 0.29 (0.26) 0.98 1.00 0.96
(gs) (ad) 0.31 (0.30) 0.67 0.50 1.00
PML - 0.50 (0.17) 0.83 0.95 0.74

GLasso - 3.83 (0.77) 0.50 0.97 0.34
CLIME - 2.98 (0.51) 0.51 1.00 0.34
ANT* - 2.10 (0.72) 1.00 1.00 1.00

Hyperparam. (100, 1) – (20, 1) – (20, 1, 50, 1)

Table 1. Medians of the mean squared prediction errors (with standard de-
viations), F -scores, precisions and recalls after N = 100 repetitions of Scen. 0
to Scen. 6 (N = 50 for Scen. 4 and Scen. 6), with ne = 400 and uncorrelated
predictors. The suffix -or is used to denote ‘oracle’ settings. The hyperparam-
eters chosen for the prior spike probability are indicated in the last row of each
table, from left to right: (a, b) for (s) and (gs), (a1, b1, a2, b2) for (sgs).

(gs) is not suitable in the sparse-group-sparse settings in terms of support recovery. Our
experiments show that it is able to identify influential groups without being mistaken but,
even though the resulting estimates are small where they should be zero, it is not designed
to be used for bi-level selection. Figure 1 shows that the results are pretty stable from
ne = 200 observations in the learning set: for ne < 200 the MSPEs are rather chaotic
before stabilizing. The same figure also highlights that the presence of correlation in the
predictors does not seem to have a significant effect on the estimation procedure, except for
small size samples and high correlation where the degradation is noticeable. Overall, the
real strength of the Bayesian spike-and-slab approach is clearly the support recovery of the
direct links between predictors and responses but it seems that one can hardly expect to
deal with very high-dimensional studies as long as we do not impose a group structure or
a huge degree of sparsity. The highly competitive MSPEs obtained confirm the relevance
of Bayesian PGGMs not only for variable selection but also for prediction purposes in the
context of high-dimensional regressions.

6.2. Identification of a sparse set of predictors in a real dataset. Let us now study
the Hopx dataset, fully described in [23]. It contains p = 770 genetic markers spread over
m = 20 chromosomes from n = 29 inbred rats. It also contains the corresponding measured
gene expression levels of q = 4 tissues (adrenal gland, fat, heart and kidney). The goal is to
identify a sparse set of predictors that jointly explain the outcomes, with the natural group
structure formed by chromosomes (see Table 2). This dataset has already been analyzed in
[16], using a Bayesian regression without group structure, and later in [17] including group
and sparse-group structures. So the PGGM is supposed to bring new perspectives about
relationships in terms of partial correlations. A particularity of this dataset is that the
responses are very correlated, so we should expect an estimation of Ω−1

y with significant non-
diagonal elements and a clear advantage in using PGGMs. Indeed, a predictor considered
to be influencing all the outcomes could be the result of a direct relation to one tissue
propagated to the others by an artificial correlation effect. As can be seen on Figure 2, the
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Figure 1. Medians of the mean squared prediction errors obtained after N =
100 repetitions of Scen. 1 (top), Scen. 3 (middle) and Scen. 5 (bottom) with
±1 standard deviation and ne growing from 100 to 500. The black curves
correspond to uncorrelated predictors (ρ = 0) while the blue and red curves
correspond to correlated predictors (ρ = 0.5 and ρ = 0.9, respectively).

predictors are also highly correlated with their neighbors (for the sake of readability, we only
represent the correlogram of predictors located on chromosomes 8, 9 and 10).

Chr. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Nb. 74 67 63 60 39 45 52 43 31 51 21 26 33 22 15 27 18 30 34 19

Table 2. Number of markers on each chromosome, which correspond to the
sizes κg of each group for 1 ⩽ g ⩽ 20 when running (gs) and (sgs).
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Figure 2. Correlogram of responses (left) and correlogram of predictors lo-
cated on chromosomes 8, 9 and 10 (right). The colormap associates red with
negative correlations and blue with positive correlations.

The small sample size relative to the number of covariates (29/770) weakens the study.
To strengthen our conclusions, we decided to run N = 100 experiments based on 25 ran-
domly chosen observations and to aggregate the results. We first investigate the selection
of predictors at the chromosomes scale, i.e. we run (gs) according to the previous protocol
with an adaptative shrinkage and we choose (a, b) = (1, 20) in the prior probability π. The
empirical distribution of the posterior probability of inclusion for each chromosome is repre-
sented on the left of Figure 3. The selection procedure focuses on chromosomes 14, 15 and
17 (and not just on chromosomes 2 and 3 as in [17]) but the estimation process gives an
overwhelming advantage to chromosome 14, far ahead of its neighbors. This is undoubtedly
the influence of D14Mit3, a marker located on chromosome 14 and known to have a very
significant effect on this dataset. The main conclusion to be drawn at this stage is that chro-
mosome 14 has a positive effect on Fat and a negative effect on Heart, as can also be seen
on the right of Figure 3. Therefore, it is likely that the overall positive influence of D14Mit3
identified by previous authors is due to the combination of a direct positive link with Fat, a
direct negative link with Heart and a correlation effect from the outcomes. This hypothesis
is given additional credibility by the numerical results: from (gs), the corresponding col-
umn of ∆ is approximately (0.00, 0.04,−0.09, 0.00) which, through relations (1.1), leads to
(0.15, 0.25, 0.34, 0.21) as estimated regression coefficients. This roughly corresponds to the
values indicated in Tab. 2 of [17], at least for the main effect on Heart. Thus for chromosome
14, the numerical results coincide but the interpretations are clearly different. Of course,
similar reasonings can be carried out for the less influent chromosomes.

It is perhaps more interesting to look for a bi-level selection in order to identify a sparse
set of markers and not only chromosomes. In this regard, (sgs) is launched using the same
statistical protocol, adaptative shrinkage and hardly informative hypermarameters a1 = 3,
b1 = 1, a2 = 1 and b2 = 1 which happen to be sufficient to generate a huge degree of sparsity.
While many chromosomes are excluded from the model given by (gs), with (sgs) we see
some contributions localized in certain chromosomes having little influence when taken as a
whole. At the markers scale, the randomness of the sampler and the high level of correlation
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Figure 3. Empirical distribution of the posterior probability of inclusion es-
timated by (gs) for each chromosome (left). Aggregated (gs) estimation of ∆
on chromosome 14 with D14Mit3 hilighted (right).

between close predictors probably explain the presence of artifacts which sometimes make
it difficult to distinguish the real contributions from the background noise. We therefore
use the N = 100 experiments to build 95% confidence intervals and keep only significant
estimates. By way of example, Figure 4 displays the results obtained on chromosomes 7, 8
and 14. The main markers standing out are summarized in Table 3 together with the kind of
direct influences detected. Markers already highlighted in [16] or [17] are also indicated. One
can see that most of our conclusions coincide, but new markers are suggested (especially on
chromosome 8) and others have disappeared. Overall, the more stringent statistical protocol
that we used led to the retention of fewer predictors with more guarantee. An important
consequence of this study is the new interpretations in terms of direct influences allowed by
PGGMs. Especially as the residual correlations, hidden in the estimation of R = Ω−1

y and
closely related to the correlations between the responses, are very high (greater than 0.7),
as we suspected from Figure 2.

Figure 4. Aggregated (sgs) estimation of ∆ on chromosomes 7, 8 and 14,
from left to right. The hilighted markers are D7Cebr205s3, D7Mit6, D7Rat19,
Myc and D7Rat17 for chromosome 7, D8Mgh4, D8Rat135 and Rbp2 for chromo-
some 8 and D14Rat8 and D14Mit3 for chromosome 14.
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Chromosomes Markers Main direct influences

3 D3Mit16* Adrenal+ Heart–

7

D7Cebr205s3* Fat+ Heart–
D7Mit6* Fat–
D7Rat19* Heart–
Myc* Adrenal+

D7Rat17 Adrenal+ Heart–

8
D8Mgh4 Adrenal– Heart–
D8Rat135 Fat+ Heart–
Rbp2 Fat–

10
D10Rat33* Adrenal+
D10Mit3* Adrenal+
D10Rat31* Fat–

11 D11Rat47 Fat–

14
D14Rat8* Fat+ Heart–
D14Mit3* Fat+ Heart–

15
D15Cebr7s13 Kidney–
D15Rat21* Adrenal+ Kidney–

17 Prl Adrenal– Kidney–

20 D20Rat55 Kidney–

Table 3. Main relations detected by (sgs). X* means that marker X has
already been suggested by previous authors in this dataset. Y– (Y+) means
that response Y is negatively (positively) influenced by X.

6.3. Discussion and Conclusion. To conclude, we would like to draw the attention of
the reader to some weaknesses of the study, still under investigation. On the one hand, as
soon as p is large (say, p ⩾ 500), the Bayesian studies should be conducted with a group
structure or by promoting very sparse settings because due to the outline of the sampler,
looping over each column of ∆ may quickly become intractable. A group structure limits
the number of loops (only m ≪ p per sampler iteration), although each loop may require
the generation of large Gaussian vectors (up to (q × κg)-dimensional), so compromises are
needed. Subdividing the dataset is natural when it is intrinsically equipped with a group
structure (e.g. that of the previous section), we could suggest otherwise a clustering of the
set of predictors to gather similar entries and control the size of the groups. At this stage,
our procedures cannot compete with the Lasso-type algorithms (GLasso, CLIME or even
ANT) in terms of computational times. This is an issue on which future studies should focus
(ongoing works are devoted to translating the samplers into more efficient environments),
enhanced MCMC methods may also be useful or novel computational strategies like the
‘shotgun’ stochastic algorithm of [31]. On the other hand, the procedures are obviously very
sensitive to the initialization of the sampler, especially when p ≫ n. For example, the term
|Iκg + λg X t

g Xg| is likely to explode when κg is large and λg > 1, that is why λg has to be
carefully controlled via an accurate initial choice of ℓg. Our heuristic approach is to initialize
ℓg such that E[λg] < 1 to control the behavior of |Iκg + λg X t

g Xg| during the first iterations.
This works pretty well in practice, but needs to be done on a case-by-case basis, which could
be improved. From a theoretical point of view, we should obviously enhance the estimation
procedure by sampling from the MGIGq distribution for q > 1, and not using the mode.
Our fallback solution gives satisfactory but not completely rigorous results. In addition, it
could be interesting to generalize the support recovery guarantee of Proposition 3.2 to (sgs),
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which is certainly possible at the cost of a few additional developments. Overall, our study
shows that for the moderate values of p (up to 103 or 104), the Bayesian approach of the
partial Gaussian graphical models is a very serious alternative to the frequentist penalized
estimations, for prediction but also and especially for support recovery.
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