

Mécanique du point

CC1
2 h
Sans document, ni calculatrice

Mouvement

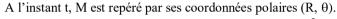
circulaire décéléré

Questions cours : Repère de Frenet

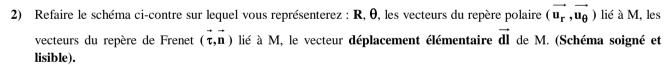
Soit un point matériel mobile M de masse m et soit (Γ) sa trajectoire dans un référentiel R.

- 1) Définir le **repère de Frenet** (M, τ, n) lié au point M, à l'instant t :
 - a) Définir le plan osculateur P à l'instant t Définir les deux vecteurs de la base de Frenet (τ, n) de ce plan :
 Direction Sens Norme.
 - **b**) A quoi est assimilé localement la trajectoire (Γ) de M à l'instant t? Définir le centre de courbure C et le rayon de courbure R de (Γ) à t.
- 2) Donner dans la base de Frenet (τ, \mathbf{n}) , les composantes des vecteurs :
 - a) déplacement élémentaire **dl** de M en fonction de l'abscisse curviligne s.
 - **b**) vitesse instantanée $\overrightarrow{\mathbf{V}}$ de M en fonction de V, puis de s.
 - c) accélération a de M en fonction de V, puis de s.
- 3) En déduire les composantes de la résultante dynamique $\sum \overline{F_{ext \to M}}$ (ou somme des forces extérieures) appliquées à M, à l'instant t, dans la base de Frenet (τ, \vec{n}) .

<u>Application</u>: Un point matériel M de masse m=2 kg, a un mouvement de rotation uniformément décéléré. Sa trajectoire circulaire (Γ) de centre O est dans le plan xOy. Le point M tourne autour de l'axe Oz, son vecteur rotation instantanée est noté: $\overrightarrow{\omega} = \omega \overrightarrow{u_z} = \frac{d\theta}{dt} \overrightarrow{u_z} = \dot{\theta} \overrightarrow{u_z}$.



1) Justifier le fait que l'accélération angulaire $\frac{d\omega}{dt} = \frac{d^2\theta}{dt^2} = \ddot{\theta}$ soit constante et < 0 - Donner l'expression de la vitesse angulaire ω en fonction de $\ddot{\theta}$ et t (à $t_0 = 0$ on prendra $\omega = \omega_0$) – En déduire l'expression de θ en fonction de $\ddot{\theta}$, ω_0 et t (à $t_0 = 0$ on prendra $\theta_0 = 0$).



- 3) Exprimer dans la base polaire $(\overrightarrow{u_r}, \overrightarrow{u_\theta})$, les composantes des vecteurs : $\overrightarrow{\tau}, \overrightarrow{n}$, puis celles des vecteurs \overrightarrow{dl} et \overrightarrow{V} en fonction de R et θ .
- 4) Exprimer dans la base de Frenet $(\vec{\tau}, \vec{n})$ lié à M, les composantes du vecteur **accélération a** de M en fonction de \mathbf{R} et θ ainsi que sa norme Représenter le vecteur \vec{a} à l'instant t ainsi que ses deux composantes.
- 5) Exprimer dans la base de Frenet $(\vec{\tau}, \vec{n})$ lié à M, les composantes du vecteur **résultante dynamique** $\sum \overrightarrow{F_{ext \to M}}$ appliquées à M, à l'instant t, ainsi que sa norme Représenter le vecteur ainsi que ses deux composantes dans la base de Frenet $(\vec{\tau}, \vec{n})$. Ce vecteur est-il constant ?.

Exercice 1:

Dans le repère R (O, $\overrightarrow{u_x}, \overrightarrow{u_y}, \overrightarrow{u_z}$) orthonormé direct, on considère les deux vecteurs : $\overrightarrow{A} = (0,3,1)$ et $\overrightarrow{B} = (2,1,0)$.

- 1) Expliciter (sans AN), l'angle entre les deux vecteurs ramenés à la même origine : $\theta = \text{angle}(\vec{A}, \vec{B})$
- 2) Expliciter le vecteur $\overrightarrow{\mathbf{W}} = \overrightarrow{\mathbf{A}} \wedge \overrightarrow{\mathbf{B}}$: direction, sens, composantes ainsi que sa norme par deux méthodes différentes.
- 3) Représenter les vecteurs \vec{A} , \vec{B} et \vec{W} ainsi que l'angle θ dans le repère R (Schéma soigné et lisible)

université angers

Exercice 2:

On considère un point matériel M se déplaçant dans un référentiel R, muni d'une base cartésienne orthonormée directe $(\overrightarrow{u_x}, \overrightarrow{u_y})$. Les coordonnées du point M à l'instant t sont : $\begin{cases} x(t) = t+1 \\ y(t) = t^2+2 \end{cases}$

- 1) Déterminer l'équation et la nature de la **trajectoire** (Γ) de M dans R.
- 2) Exprimer les coordonnées polaires (ρ, ϕ) de M en fonction de ses coordonnées cartésiennes, puis en fonction de t.
- 3) Exprimer en fonction de t, les composantes du vecteur position OM de M dans :
 - a) le repère cartésien; b) le repère polaire lié à M; c) sa norme
- 4) Exprimer en fonction de t, les composantes du vecteur déplacement élémentaire $\overrightarrow{\mathbf{dl}}$ de M dans :
 - a) le repère cartésien ; b) le repère polaire lié à M
- 5) En déduire en fonction de t, les composantes du vecteur vitesse instantanée $\overline{V_{M/R}}$ de M dans :
 - a) le repère cartésien; b) le repère polaire lié à M; c) le repère de Frenet (τ, \mathbf{n}) lié à M; d) sa norme
- 6) Exprimer en fonction de t, les composantes du vecteur accélération $\overrightarrow{a_{M/R}}$ de M dans :
 - a) le repère cartésien ; b) le repère de Frenet $(\vec{\tau}, \vec{n})$ lié à M (on notera $\mathbf{R}_{\mathbf{C}}$ rayon de courbure de la trajectoire (Γ) à l'instant \mathbf{t} ; c) sa norme
- 7) En déduire le rayon de courbure R_C de la trajectoire (Γ) en fonction de t.

Donnée :
$$(Arctan[u(x)])' = \frac{u'(x)}{1+u^2(x)}$$

CORRECTION

CC1 Mécanique point 2018-19 QC 1/ Repere Frenct: a) plan osculatere B. Plan continant localement la trajectoire (M) Une base du plan P est la base de Frenct tq: centre de courbure c de (P) , sens du mut centre de courbure c de (P) b) (P) est assimilé (à t) à un avec de conde centre en C de nayon R : centre de couraire = R MC = RM Ds base (3, m) ors a) de ds ds abscisse cuiligne O.S b) V= dl = V6=\$3 $0.5 c) \vec{a} = \frac{d(\vec{s}\vec{c})}{dF} = \frac{\vec{s}\vec{c}}{dF} + \frac{\vec{s}^2 \vec{m}}{R} = \frac{d\vec{v}\vec{c}}{dF} + \frac{\vec{v}^2 \vec{m}}{R}$ $\Xi \vec{F}_{ext \to 17} = m\vec{a} \\
= (ma_{B} = mdV) \\
= ma_{R} = mV^{2} \\
R$ dans (\vec{z}, \vec{m}) MRUV: mut de robation unfamement vouie Application ici décéléré déceluation angulaire 0 <0 ... uniformement déceléré = de = 0 0.5 · 0° = dw $\Rightarrow w = 0°t + w_0$ en rads $0 \leq w = \dot{\theta} = d\theta = \dot{\theta}t + w_0 \Rightarrow \theta = \frac{1}{2}\ddot{\theta}t^2 + w_0t + \theta_0$ 3) De base potaire (Un, Vo) on = Ruz = -R m Un = -m m/ Vn=drue) = R due = Roug V (R& OLS de = d(Rui) = Rdoug = (1) 015 $\vec{a} = \frac{dV}{dt} = R\vec{\theta} = R\vec{\theta}^2$ $\vec{a} = \frac{dV}{R} = \frac{R\vec{\theta}^2}{R} = R\vec{\theta}^2$ 4) 110 11 = V(RB)2 + (RB2)2 = VRO2 + R204 = RV82+34 0,5 11 Fest -1711= MRV 82+ 84 EFERT SIT = ma = (mRO)