Tous les documents sont interdits, ainsi que les calculatrices et téléphones portables.

Exercice 1. Soit \mathcal{B} la base canonique de \mathbb{R}^3 , et considérons l'application linéaire

$$f \colon \mathbb{R}^3 \to \mathbb{R}^3, \quad \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} \frac{1}{3}x - y + z \\ -\frac{1}{2}x + \frac{1}{4}y + \frac{1}{2}z \\ z \end{pmatrix}.$$

- 1. Déterminer la matrice de f.
- 2. Donner une base et la dimension de Ker(f). Faire de même pour Im(f). L'application f est-elle bijective? (Justifier votre réponse)
- 3. Soient $\vec{\mathbf{u}}_1 = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$, $\vec{\mathbf{u}}_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$, et $\vec{\mathbf{u}}_3 = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$. Montrer que ces 3 vecteurs forment une base de \mathbb{R}^3 , notée \mathcal{V} . Expliciter $f(\vec{\mathbf{u}}_1)$ et l'exprimer comme combinaison linéaire des $\vec{\mathbf{u}}_1$, $\vec{\mathbf{u}}_2$, $\vec{\mathbf{u}}_3$. Faire de même pour $f(\vec{\mathbf{u}}_2)$ et $f(\vec{\mathbf{u}}_3)$.
- 4. Soit $\vec{\mathbf{w}}$ un vecteur de \mathbb{R}^3 de coordonnées -2, 1, -1 dans la base \mathcal{V} . Déterminer les coordonnées de $\vec{\mathbf{w}}$ dans la base \mathcal{B} .

 On considère maintenant le vecteur $\vec{\mathbf{v}}$ de \mathbb{R}^3 de coordonnées 1, 0, 1 dans la base \mathcal{B} . Déterminer les coordonnées de $\vec{\mathbf{v}}$ dans la base \mathcal{V} .

Exercice 2. Soit $f: \mathbb{R}^2 \to \mathbb{R}^2$ une application linéaire vérifiant

$$f\begin{pmatrix}1\\1\end{pmatrix}=\begin{pmatrix}2\\2\end{pmatrix}$$
 et $f\begin{pmatrix}1\\-1\end{pmatrix}=\begin{pmatrix}3\\-1\end{pmatrix}$.

- 1. L'application f est-elle déterminée de manière unique? Est-elle bijective?
- 2. Montrer que g_{λ} : $\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \lambda \begin{pmatrix} x \\ y \end{pmatrix}$ est linéaire pour tout $\lambda \in \mathbb{R}$. Donner une forme matricielle de g_{λ} .
- 3. Chercher les valeurs λ pour lesquelles le système

$$(S) \quad f\begin{pmatrix} x \\ y \end{pmatrix} - g_{\lambda} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

admet au moins deux solutions. Pour chacune de ces valeurs de λ , déterminer une base de l'ensemble des solutions de (S).